1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MArishka [77]
2 years ago
8

A solid sphere, a solid disk, and a thin hoop are all released from rest at the top of the incline (h0 = 20.0 cm).

Physics
1 answer:
Ede4ka [16]2 years ago
6 0

Answer:

a. The object with the smallest rotational inertia, the thin hoop

b. The object with the smallest rotational inertia, the thin hoop

c.  The rotational speed of the sphere is 55.8 rad/s and Its translational speed is 1.67 m/s

Explanation:

a. Without doing any calculations, decide which object would be spinning the fastest when it gets to the bottom. Explain.

Since the thin has the smallest rotational inertia. This is because, since kinetic energy of a rotating object K = 1/2Iω² where I = rotational inertia and ω = angular speed.

ω = √2K/I

ω ∝ 1/√I

since their kinetic energy is the same, so, the thin hoop which has the smallest rotational inertia spins fastest at the bottom.

b. Again, without doing any calculations, decide which object would get to the bottom first.

Since the acceleration of a rolling object a = gsinФ/(1 + I/MR²), and all three objects have the same kinetic energy, the object with the smallest rotational inertia has the largest acceleration.

This is because a ∝ 1/(1 + I/MR²) and the object with the smallest rotational inertia  has the smallest ratio for I/MR² and conversely small 1 + I/MR² and thus largest acceleration.

So, the object with the smallest rotational inertia gets to the bottom first.

c. Assuming all objects are rolling without slipping, have a mass of 2.00 kg and a radius of 3.00 cm, find the rotational and translational speed at the bottom of the incline of any one of these three objects.

We know the kinetic energy of a rolling object K = 1/2Iω²  + 1/2mv² where I = rotational inertia and ω = angular speed, m = mass and v = velocity of center of mass = rω where r = radius of object

The kinetic energy K = potential energy lost = mgh where h = 20.0 cm = 0.20 m and g = acceleration due to gravity = 9.8 m/s²

So, mgh =  1/2Iω²  + 1/2mv² =  1/2Iω²  + 1/2mr²ω²

Let I = moment of inertia of sphere = 2mr²/5 where r = radius of sphere = 3.00 cm = 0.03 m and m = mass of sphere = 2.00 kg

So, mgh = 1/2Iω²  + 1/2mr²ω²

mgh = 1/2(2mr²/5 )ω²  + 1/2mr²ω²

mgh = mr²ω²/5  + 1/2mr²ω²

mgh = 7mr²ω²/10

gh = 7r²ω²/10

ω² = 10gh/7r²

ω = √(10gh/7) ÷ r

substituting the values of the variables, we have

ω = √(10 × 9.8 m/s² × 0.20 m/7) ÷ 0.03 m

= 1.673 m/s ÷ 0.03 m

= 55.77 rad/s

≅ 55.8 rad/s

So, its rotational speed is 55.8 rad/s

Its translational speed v = rω

= 0.03 m × 55.8 rad/s

= 1.67 m/s

So, its rotational speed is of the sphere is 55.8 rad/s and Its translational speed is 1.67 m/s

You might be interested in
Which term describes a gap in the geologic record that occurs when sedimentary rocks cover an eroded surface?
Lemur [1.5K]

<em>The term that describes a gap in the geologic record that occurs when sedimentary rocks cover an eroded surface is called</em> <em>unconformity.</em>

<em>Glad to help ya!! ;)</em>

3 0
3 years ago
Read 2 more answers
Which does not contain a lens?
denis23 [38]
Im pretty sure it’s A eye
8 0
3 years ago
A 2.20-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 29.0 N is require
g100num [7]

Answer:

a. 145 N/m b. 1.29 Hz c. 1.62 m/s d.  0 m e. 13.2 m/s² f. ± 0.2 m g. 2.9 J h. 0.54 m/s i. 4.39 m/s²

Explanation:

a. The force constant of the spring

The spring force F = kx and k = F/x where k is the spring constant. F = 29.0 N and x = 0.200 m

k = 29.0 N/0.200 m = 145 N/m

b. The frequency of oscillations, f

f = 1/2π√(k/m)    m = mass = 2.20 kg

f = 1/2π√(145 N/m/2.20 kg) = 1.29 Hz

c. maximum speed of the object

The maximum elastic potential energy of the spring = maximum kinetic  energy of the object

1/2kx² = 1/2mv²

v = (√k/m)x where v is the maximum speed of the object

v = (√145/2.2)0.2 = 1.62 m/s

d Where does the maximum speed occur?

The maximum speed occurs at  0 m

e. The maximum acceleration

a = kx/m = 145 × 0.2/2.2 = 13.2 m/s²

f. The maximum acceleration occurs at x = ± 0.2 m

g. The total energy of the system is the maximum elestic potential energy of the system

E = 1/2kx² = 1/2 × 145 × 0.2² = 2.9 J

h. When x = x₀/3

1/2k(x₀/3)² = 1/2mv²

kx₀²/9 = mv²

v = 1/3(√k/m)x₀ = 1/3(√145/2.2)0.2 = 0.54 m/s

i When x = x₀/3

a = kx₀/3m =  145 × 0.2/(2.2 × 3)= 4.39 m/s²

8 0
3 years ago
Which of the following changes would be a physical change to a substance?(1 point)
Naddika [18.5K]

Answer:

all of them I think

Explanation:

6 0
2 years ago
A body has translatory motion if it moves along a
Ierofanga [76]
<span>A body has translatory motion if it moves along a: mcqs </span>
8 0
4 years ago
Other questions:
  • What is the force when two charged spheres distance is in half​
    14·1 answer
  • The density of gold is 19.3 g/cm^3. what is the mass of 24 cm^3 of gold?
    9·1 answer
  • Extreme tides are
    9·1 answer
  • *PLEASE HURRY ITS FOR A QUIZ*
    14·1 answer
  • What is a wave that has all the crests and troughs in the same place at the same time?
    9·2 answers
  • If the moon is new as seen from the earth, what phase would the earth be in as seen by an astronaut on the moon? explain your re
    6·1 answer
  • PLEASE HELP When astronauts eliminate waste in space, which is likely to be used?  [A] showers and faucets, spraying hot water..
    12·1 answer
  • Currents in the ocean are caused by differences in water density. Colder, denser water tends to
    9·2 answers
  • Which change of state is shown in the photo
    12·1 answer
  • in the two cases shown the mass and the spring are identical but the amplitude of the simple harmonic motion is twice as big in
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!