<h3>Answer:</h3>
60 g O₂
<h3>General Formulas and Concepts:
</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>Explanation:
</h3>
<u>Step 1: Define</u>
[RxN - Balanced] CH₄ + 2O₂ → CO₂ + 2H₂O
[Given] 2 mol H₂O
[Solve] x g O₂
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol H₂O → 2 mol O₂
[PT] Molar Mass of O - 16.00 g/mol
Molar Mass of O₂ - 2(16.00) = 32.00 g/mol
<u>Step 3: Stoichiometry</u>
- Set up conversion:

- Divide/Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 1 sig fig.</em>
64.00 g O₂ ≈ 60 g O₂
The group/family number is the same number of valance electrons.
N = 3
O = -2
1(3) +2(-2)= -1
Answer:
B. The substances that are formed
Explanation:
a chemical reaction is a reaction that there's a formation of a new compound or substance.
can i have brainliest? and btw, let me know if you get it right! hope i helped <3
As we have the balanced reaction equation is:
N2O4 (g) ↔ 2NO2(g)
from this balanced equation, we can get the equilibrium constant expression
KC = [NO2]^2[N2O4]^1
from this expression, we can see that [NO2 ] is with 2 exponent of the stoichiometric and we can see that from the balanced equation as NO2
is 2NO2 in the balanced equation.
and [N2O4] is with 1 exponent of the stoichiometric and we can see that from the balanced equation as N2O4 is 1 N2O4 in the balanced equation.
∴ the correct exponent for N2O4 in the equilibrium constant expression is 1