Answer:
The answer is "
"
Explanation:
Calculating the mass flow rate of fluid:


Calculating the amount of heat transfer.


Calculating the required value for heat flux:


Answer:
false
Explanation:
I had the same answer for this question on my schoolwork
:) HOPE THIS HELPS
Answer:
The 40g mass will be attached at 69 cm
Explanation:
First, make a sketch of the meterstick with the masses placed on it;
--------------------------------------------------------------------------
↓ Δ ↓
20 g.................50 cm.................40g
38 cm y cm
Apply principle of moment;
sum of clockwise moment = sum of anticlockwise moment
40y = 20 (38)
40y = 760
y = 760 / 40
y = 19 cm
Therefore, the 40g mass will be attached at 50cm + 19cm = 69 cm
12cm 50 cm 69cm
--------------------------------------------------------------------------
↓ Δ ↓
20 g.................50 cm.................40g
38 cm 19 cm
To solve this problem it is necessary to apply the concepts related to Torque as a function of Force and distance. Basically the torque is located in the forearm and would be determined by the effective perpendicular lever arm and force, that is

Where,
F = Force
r = Distance
Replacing,


The moment of inertia of the boxer's forearm can be calculated from the relation between torque and moment of inertia and angular acceleration

I = Moment of inertia
= Angular acceleration
Replacing with our values we have that



Therefore the value of moment of inertia is 
(A "release" of a chemical means that it is emitted to the air or water, or placed in some type of land disposal.)