1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arlecino [84]
3 years ago
15

g a small smetal sphere, carrying a net charge is held stationarry. what is the speed are 0.4 m apart

Physics
1 answer:
weeeeeb [17]3 years ago
6 0

Complete Question

A small metal sphere, carrying a net charge q1=−2μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q2= -8μC and mass 1.50g, is projected toward q1. When the two spheres are 0.80m apart, q2 is moving toward q1 with speed 20ms−1. Assume that the two spheres can be treated as point charges. You can ignore the force of gravity.The speed of q2 when the spheres are 0.400m apart is.

Answer:

The value v_2  =  4 \sqrt{10} \  m/s

Explanation:

From the question we are told that

   The  charge on the first sphere is  q_1  =  2\mu C  =  2*10^{-6} \  C

    The charge on the second sphere is  q_2 =  8 \mu C = 8*10^{-6} \  C

     The  mass of the second charge is m  =  1.50 \  g  =  1.50 *10^{-3} \ kg

      The  distance apart is  d =  0.4 \  m

      The  speed of the second  sphere is  v_1  =  20 \  ms^{-1}

Generally the total energy possessed by when q_2 and  q_1 are separated by 0.8 \  m is mathematically represented

     Q =  KE + U

Here KE   is  the kinetic energy which is mathematically represented as

     KE  =  \frac{1 }{2}  m (v_1)^2

substituting value

     KE  =  \frac{1 }{2}  * ( 1.50 *10^{-3}) (20 )^2

     KE  =  0.3 \  J

And  U is  the  potential  energy which is mathematically represented as

        U  =  \frac{k *  q_1 *  q_2  }{d }

substituting values

       U  =  \frac{9*10^9 *  2*10^{-6} * 8*10^{-6}  }{0.8 }

      U  =  0.18 \  J

So

       Q =  0.3 +  0.18

       Q =  0.48 \  J

Generally the total energy possessed by when q_2 and  q_1 are separated by 0.4 \  m is mathematically represented

         Q_f =  KE_f + U_f

Here KE_f is  the kinetic energy which is mathematically represented as

     KE_f  =  \frac{1 }{2}  m (v_2^2

substituting value

     KE_f  =  \frac{1 }{2}  * ( 1.50 *10^{-3}) (v_2 )^2

     KE_f  =  7.50 *10^{ -4} (v_2 )^2

And  U_f is  the  potential  energy which is mathematically represented as

        U_f  =  \frac{k *  q_1 *  q_2  }{d }

substituting values

       U_f  =  \frac{9*10^9 *  2*10^{-6} * 8*10^{-6}  }{0.4 }

      U_f  =  0.36 \  J

From the law of energy conservation

     Q =  Q_f

So

    0.48 =  0.36 +(7.50 *10^{-4} v_2^2)

   v_2  =  4 \sqrt{10} \  m/s

     

   

You might be interested in
Is it possible to have a charge of 5 x 10-20 C? Why?
ruslelena [56]

1) No

2) Yes

3) No

4) Equal and opposite

5) 32400 N

6) Repulsive

7) The electric force is 2.3\cdot 10^{39} times bigger than the gravitational force

Explanation:

1)

In nature, the minimum possible charge that an object can have is the charge of the electron, which is called fundamental charge:

e=1.6\cdot 10^{-19}C

Electrons are indivisible particles (they cannot be separated), this means that an object can have at least the charge equal to the charge of one electron (in fact, it cannot have a charge less than e, because it would meant that the object has a "fractional number" of electrons).

In this problem, the object has a charge of

Q=5\cdot 10^{-20}C

If we compare this value to e, we notice that Q, so no object can have a charge of Q.

2)

As we said in part 1), an object should have an integer number of electrons in order to be charged.

This means that the charge of an object must be an integer multiple of the fundamental charge, so we can write it as:

Q=ne

where

Q is the charge of the object

n is an integer multiple

e is the fundamental charge

Here we have

Q=2.4\cdot 10^{-18}C

Substituting the value of e, we find n:

n=\frac{Q}{e}=\frac{2.4\cdot 10^{-18}}{1.6\cdot 10^{-19}}=15

n is integer, so this value of the charge is possible.

3)

We now do the same procedure for the new object in this part, which has a charge of

Q=2.0\cdot 10^{-19}C

Again, the charge on this object can be written as

Q=ne

where

n is the number of electrons in the object

Using the value of the fundamental charge,

e=1.6\cdot 10^{-19}C

We find:

n=\frac{Q}{e}=\frac{2.0\cdot 10^{-19}}{1.6\cdot 10^{-19}}=1.25

n is not integer, so this value of charge is not possible, since an object cannot have a fractional number of electrons.

4)

To solve this part, we use Newton's third law of motion, which states that:

"When an object A exerts a force on an object B (Action force), then object B exerts an equal and opposite force on object A (reaction force)".

In this problem, we have two objects:

- A charge Q

- A charge 5Q

Charge Q exerts an electric force on charge 5Q, and we can call this action force. At the same time, charge 5Q exerts an electric force on charge Q (reaction force), and according to Newton's 3rd law, the two forces are equal and opposite.

5)

The magnitude of the electric force between two single-point charges is

F=k\frac{q_1 q_2}{r^2}

where

k is the Coulomb's constant

q1, q2 are the two charges

r is the separation between the two charges

In this problem we have:

q_1=+4.5\cdot 10^{-6}C is charge 1

q_2=+7.2\cdot 10^{-6}C is charge 2

r = 0.30 cm = 0.003 m is the separation

So, the electric force  between the two charges is

F=(9\cdot 10^9)\frac{(4.5\cdot 10^{-6})(7.2\cdot 10^{-6})}{(0.003)^2}=32400 N

6)

The electric force between two charged objects has direction as follows:

- If the two objects have charges of opposite signs (+ and -), the force between them is attractive

- If the two objects have charges of same sign (++ or --), the force between them is repulsive

In this problem, the two charges are:

q_1=+4.5\cdot 10^{-6}C is charge 1

q_2=+7.2\cdot 10^{-6}C is charge 2

We see that the two charges have same sign: therefore, the force between them is repulsive.

7)

The electric force between the proton and the electron in the atom can be written as

F_E=k\frac{q_1 q_2}{r^2}

where

q_1 = q_2 = e = 1.6\cdot 10^{-19}C is the magnitude of the charge of the proton and of the electron

r=5.3\cdot 10^{-11} m is the separation between them

So the force can be rewritten as

F_E=\frac{ke^2}{r^2}

The gravitational force between the proton and the electron can be written as

F_G=G\frac{m_p m_e}{r^2}

where

G is the gravitational constant

m_p = 1.67\cdot 10^{-27}kg is the proton mass

m_e=9.11\cdot 10^{-27}kg is the electron mass

Comparing the 2 forces,

\frac{F_E}{F_G}=\frac{ke^2}{Gm_p m_e}=\frac{(9\cdot 10^9)(1.6\cdot 10^{-19})^2}{(6.67\cdot 10^{-11})(1.67\cdot 10^{-27})(9.11\cdot 10^{-31})}=2.3\cdot 10^{39}

8 0
3 years ago
A trunk is dragged 3.0 meters across an attic floor by a force of 2.0N how much positive work is done on the trunk
Novay_Z [31]

The formula for work is

F*d

Therefore work=2.0N*3.0=6N*m

8 0
3 years ago
When an apple falls towards the earth,the earth moves up to meet the apple. Is this true?If yes, why is the earth's motion not n
Harlamova29_29 [7]

Answer:

because the mass of the apple is very less compared to the mass of earth. Due to less mass the apple cannot produce noticable acceleration in the earth but the earth which has more mass produces noticable acceleration in the apple. thus we can see apple falling on towards the earth but we cannot see earth moving towards the apple.

6 0
3 years ago
What is the speed of a bobsled whose distance-time graph indicates that it traveled 119m in 27s
BaLLatris [955]
4ms I'm just guessing by the way

3 0
3 years ago
How should you behave while performing laboratory experiments?​
Brrunno [24]

Explanation:

Always behave responsibly in the laboratory. Do not run around or play practical jokes. Always check the safety data of any chemicals you are going to use. Never smell, taste or touch chemicals unless instructed to do so.

4 0
3 years ago
Read 2 more answers
Other questions:
  • A net force of -1,000 Newtons is delivered to the object over a time of .02 seconds. Calculate the new velocity of the object.
    11·1 answer
  • Ahmed kept a balloon from his birthday for several days until it began to deflate and slowly sink to the ground. He wondered how
    8·2 answers
  • Why is the handle made of a different material than the rest of the pot?
    9·2 answers
  • Estimate the water volume in the graduated cylinder to the nearest 0.1 mL.
    10·1 answer
  • The earth rotates once per day about an axis passing through the north and south poles, an axis that is perpendicular to the pla
    6·1 answer
  • Which graph set-up would enable students to calculate instantaneous acceleration from the slope on the graph? a) Place distance
    15·1 answer
  • ¿Cómo obtener razonadamente la primera ley de newton a partir de la segunda?
    6·1 answer
  • What must the charge (sign and magnitude) of a particle of mass 1.40 gg be for it to remain stationary when placed in a downward
    11·1 answer
  • Volleyball took some of its characteristics from handball and tennis <br><br> True<br> False
    14·1 answer
  • An object that is speeding up is accelerating.<br> True<br> False
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!