Chemical reactions are basically divided into two major classes depending on whether the reaction lose energy or gain energy from the environment during the course of the reaction. The two classes of reaction are exothermic and endothermic reaction.
An exothermic reaction is a type of reaction in which the reaction system lose energy to the environment and thus, the energy content of the reactants is more than that of the product formed. Because of this, the enthapyl change of an exothermic reaction is always negative.
An endothermic reaction is a type of reaction in which the reaction system absorb energy from the environment. Thus, the energy contents of the products is always higher than that of the reactants and the enthapyl change of the reaction is always positive. During the course of the reaction, the reaction container is usually cold to the touch because energy is been absorbed from the environment.
Explanation:
Atomic number of carbon is 6. So, 4 valence electrons are present.
Therefore, it can form 4 covalent bonds with varying bond angles by sharing its valence electrons.
Catenation is also an important property of carbon. Catenation is bonding with atoms of same element. Carbon skeleton can be formed in any direction and can vary in length, branching, and ring structure.
Elements required for making most of the molecules in living organisms are:
C, H, N, O, P and S
Carbon easily form covalents with other 5 elements.
These properties make carbon most versatile building blocks of the molecules used by living organisms.
You need to find the abundance. Then, multiply the abundance by 100, and add that to the mass for each isotope. Basically, for each isotope, take the percentage abundance and add it to the mass. Multiply each calculation of these together to get your average atomic mass,
Ok so all are in the alkali family also they are all metals and in group 1 but I think the one that might reacts quickest is Li because it has less AMU
<u>Answer:</u> For the given reaction, the value of
is greater than 1
<u>Explanation:</u>
For the given chemical equation:

The expression of
for above equation follows:
![K_c=\frac{[Ca^{2+}]\times [CO_3^{2-}]}{[CaCO_3}]\\\\K_c=[Ca^{2+}]\times [CO_3^{2-}]](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCa%5E%7B2%2B%7D%5D%5Ctimes%20%5BCO_3%5E%7B2-%7D%5D%7D%7B%5BCaCO_3%7D%5D%5C%5C%5C%5CK_c%3D%5BCa%5E%7B2%2B%7D%5D%5Ctimes%20%5BCO_3%5E%7B2-%7D%5D)
The concentration of pure solids and pure liquids are taken as 1 in equilibrium constant expression
As, the denominator is missing and the numerator is the only part left in the expression. So, the value of
will be greater than 1.
Hence, for the given reaction, the value of
is greater than 1