Chloroplasts and vacuoles
<h3>I think it B The group(s) that gets the special treatment.</h3><h3 /><h3>I hope this is correct.</h3><h3 /><h3 /><h3 />
Answer:
A drunk driver's car travel 49.13 ft further than a sober driver's car, before it hits the brakes
Explanation:
Distance covered by the car after application of brakes, until it stops can be found by using 3rd equation of motion:
2as = Vf² - Vi²
s = (Vf² - Vi²)/2a
where,
Vf = Final Velocity of Car = 0 mi/h
Vi = Initial Velocity of Car = 50 mi/h
a = deceleration of car
s = distance covered
Vf, Vi and a for both drivers is same as per the question. Therefore, distance covered by both car after application of brakes will also be same.
So, the difference in distance covered occurs before application of brakes during response time. Since, the car is in uniform speed before applying brakes. Therefore, following equation shall be used:
s = vt
FOR SOBER DRIVER:
v = (50 mi/h)(1 h/ 3600 s)(5280 ft/mi) = 73.33 ft/s
t = 0.33 s
s = s₁
Therefore,
s₁ = (73.33 ft/s)(0.33 s)
s₁ = 24.2 ft
FOR DRUNK DRIVER:
v = (50 mi/h)(1 h/ 3600 s)(5280 ft/mi) = 73.33 ft/s
t = 1 s
s = s₂
Therefore,
s₂ = (73.33 ft/s)(1 s)
s₂ = 73.33 ft
Now, the distance traveled by drunk driver's car further than sober driver's car is given by:
ΔS = s₂ - s₁
ΔS = 73.33 ft - 24.2 ft
<u>ΔS = 49.13 ft</u>
The headlamp's concave mirror is open on one end, and the light bulb's filament is placed at or near the focus. (Sorry if this is Wrong)
<span>Let's first off calculate the kinetic energy using the formula 1/2MV^2. Where the mass, M, is 0.6Kg. And speed, V, is 2. Hence we have 1/2 * 0.6 * 2^2 = 1.2J. Since kinetic energy is energy due to motion; hence at point B the rubber has a KE of 1.2J and not 7.5J. So I would say that only the Mass and speed is actually true; While it's kinetic energy is not true.</span>