Answer:
Final velocity (v) of an object equals initial velocity (u) of that object plus acceleration (a) of the object times the elapsed time (t) from u to v. Use standard gravity, a = 9.80665 m/s2, for equations involving the Earth's gravitational force as the acceleration rate of an object.
Explanation:
Answer:
Hey
I am sure from what i know that your answer should be the following:
Modern technology is deeply tied to efficiancy and speed. Think of the knew 5G network it gives us very fast internet, or perhaps our very nessisitys such as our phone or cumputer. On a phone you have so much (thats to say you can acces alot easly); pictures videos dictionarys video games etc etc.
Carbon tetrahydride is B. CH4
Answer:
f = 12 cm
Explanation:
<u>Center of Curvature</u>:
The center of that hollow sphere, whose part is the spherical mirror, is known as the ‘Center of Curvature’ of mirror.
<u>The Radius of Curvature</u>:
The radius of that hollow sphere, whose part is the spherical mirror, is known as the ‘Radius of Curvature’ of mirror. It is the distance from pole to the center of curvature.
<u>Focal Length</u>:
The distance between principal focus and pole is called ‘Focal Length’. It is denoted by ‘F’.
The focal length of the spherical (concave) mirror is approximately equal to half of the radius of curvature:

where,
f = focal length = ?
R = Radius of curvature = 24 cm
Therefore,

<u>f = 12 cm</u>
Vf = Vo + at
Vf = 20 m/s
Vo = 50 m/s
a = ?
t = 15
Therefore
20 = 50 + 15a
20 - 50 = 15a
-30 = 15a
a = -30 / 15
a = -2 m/s²