The magnitude of the electric field at the third vertex of the triangle is determined as zero.
<h3>Electric field at the third vertex of the triangle </h3>
The electric field at the third vertex of the equilateral triangle due to the other charges placed on the first and second vertices is calculated as follows;
E = E(13) + E(23)
E = (kq₁)/r² + (kq₂)/r²
where;
- q1 is positive charge
- q2 is negative charge
E = (kq₁)/r² - (kq₂)/r²
E = 0
Thus, the magnitude of the electric field at the third vertex of the triangle is determined as zero.
Learn more about electric field here: brainly.com/question/14372859
#SPJ1
The car will take 300 m before it stops due to applying break.
<h3>What's the relation between initial velocity, final velocity, acceleration and distance?</h3>
- As per Newton's equation of motion, V² - U² = 2aS
- V= final velocity velocity of the object, U = initial velocity velocity of the object, a= acceleration, S = distance covered by the object
- Here, U = 60 ft/sec, V = 0 m/s, a= -6 ft/sec²
- So, 0² - 60² = 2×6× S
=> -3600 = -12S
=> S = 3600/12 = 300 m
Thus, we can conclude that the distance covered by the car is 300 m before it stopped.
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: A car is being driven at a rate of 60 ft/sec when the brakes are applied. The car decelerates at a constant rate of 6 ft/sec². How long will it take before the car stops?
Learn more about the Newton's equation of motion here:
brainly.com/question/8898885
#SPJ1
Answer:
Magnetic fields exist near a magnet, farther away from a magnet, and within a magnet.
So, the answer is D. All of the above.
Let me know if this helps!
A billiard ball. unless hit, the balls stay at rest. however when hit into another, the balls do not stop unless acted upon by another force.
Explanation:
It is given that,
Displacement of the delivery truck,
(due east)
Then the truck moves,
(due south)
Let d is the magnitude of the truck’s displacement from the warehouse. The net displacement is given by :


d = 4.03 km
Let
is the direction of the truck’s displacement from the warehouse from south of east.


So, the magnitude and direction of the truck’s displacement from the warehouse is 4.03 km, 37.4° south of east.