Answer:
diffraction
Explanation:
diffraction occurs when light passes sharp edges or goes through narrow slits the rays are deflected and produce fringes of light and dark bands
The offspring can have some features for the parents relatives and can look nothing like the parents. They can look exactly alike to more of one parent then the other or have features from both parents as well
Hope this helps :3
Answer:
Explanation:
We shall apply concept of impulse to solve the problem .
Impulse = force x time
impulse = change in momentum
force x time = change in momentum
initial speed u = 24 km/h = 6.67 m /s
final speed v = 65 km/h = 18.05 m /s
change in momentum = m v - mu
= m ( v-u )
= 1350 ( 18.05 - 6.67 )
= 15363 kg m/s
F x 18 = 15363
F = 853.5 N .
Answer:
Angular speed ω=3771.4 rad/min
Revolution=5921 rpm
Explanation:
Given data

To find
Angular speed ω
Revolution per minute N
Solution
First we need to convert the speed of truck to inches per mile
as
1 mile=63360 inches
1 hour=60 minutes
so

Now to solve for angular speed ω by substituting the speed v and radius r in below equation

To solve for N(revolutions per minute) by substituting the angular speed ω in the following equation
The complete ionization of KBr into its constituents
is:<span>
<span>KBr (s) --->
K+ (aq) + Br- (aq)</span></span>
<span>
During electrolysis, oxidation takes place at the anode electrode. This means
that an ion is stripped off its electron hence becoming more positive:
<span>2 Br- (aq) --->
Br2 (g) + 2e- </span></span>
We can see that Bromine gas Br2 is evolved at the anode.
<span>
<span>Meanwhile at the cathode, the reduction reaction occurs.
Which means that the electron from the anode electrode is used to make an ion
more negative:
<span>2K+ (aq) + 2e- ---> 2K (s) </span></span>
Hence, through reduction, solid potassium is deposited on the
plate.</span>
Half reactions:
<span>Anode: 2 Br- (aq) --->
Br2 (g) + 2e- </span>
<span>Cathode: 2K+ (aq) + 2e-
---> 2K (s) </span>