<span>According to the three laws of planetary motion, planetary orbits are in the shape of an "Ellipse"
In short, Your Answer would be Option B
Hope this helps!</span>
the answer is C. It allows citizens to submit anonymous tips to the police.
Answer:
The tank is losing

Explanation:
According to the Bernoulli’s equation:
We are being informed that both the tank and the hole is being exposed to air :
∴ P₁ = P₂
Also as the tank is voluminous ; we take the initial volume
≅ 0 ;
then
can be determined as:![\sqrt{[2g (h_1- h_2)]](https://tex.z-dn.net/?f=%5Csqrt%7B%5B2g%20%28h_1-%20h_2%29%5D)
h₁ = 5 + 15 = 20 m;
h₂ = 15 m
![v_2 = \sqrt{[2*9.81*(20 - 15)]](https://tex.z-dn.net/?f=v_2%20%3D%20%5Csqrt%7B%5B2%2A9.81%2A%2820%20-%2015%29%5D)
![v_2 = \sqrt{[2*9.81*(5)]](https://tex.z-dn.net/?f=v_2%20%3D%20%5Csqrt%7B%5B2%2A9.81%2A%285%29%5D)
as it leaves the hole at the base.
radius r = d/2 = 4/2 = 2.0 mm
(a) From the law of continuity; its equation can be expressed as:
J = 
J = πr²
J =
J =
b)
How fast is the water from the hole moving just as it reaches the ground?
In order to determine that; we use the relation of the velocity from the equation of motion which says:
v² = u² + 2gh
₂
v² = 9.9² + 2×9.81×15
v² = 392.31
The velocity of how fast the water from the hole is moving just as it reaches the ground is : 

<span>a change in allele frequencies in a population over time also known as evolution</span>
Answer:
16 m/s.
Explanation:
The following data were obtained from the question:
Mass of truck = 5000 Kg
Velocity of truck = 8 m/s
Mass of car = 2500 kg
Velocity of car =..?
Next, we shall determine the momentum of the truck. This can be obtained as follow:
Mass of truck = 5000 Kg
Velocity of truck = 8 m/s
Momentum of truck =.?
Momentum = mass × velocity
Momentum = 5000 × 8
Momentum of the truck = 40000 Kg.m/s
Finally, we shall determine the velocity of the car as follow:
From the question given above, we were told that the car and truck has the same momentum.
This implies that:
Momentum of the truck = momentum of car = 40000 Kg.m/s
Thus, the velocity of the car can be obtained as shown below:
Mass of car = 2500 kg
Momentum of the car = 40000 Kg.m/s
Velocity of car =..?
Momentum = mass × velocity
40000 = 2500 × velocity
Divide both side by 2500
Velocity = 40000/2500
Velocity = 16 m/s
Therefore, the velocity of the car is 16 m/s.