Complete question:
A 45-mH ideal inductor is connected in series with a 60-Ω resistor through an ideal 15-V DC power supply and an open switch. If the switch is closed at time t = 0 s, what is the current 7.0 ms later?
Answer:
The current in the circuit 7 ms later is 0.2499 A
Explanation:
Given;
Ideal inductor, L = 45-mH
Resistor, R = 60-Ω
Ideal voltage supply, V = 15-V
Initial current at t = 0 seconds:
I₀ = V/R
I₀ = 15/60 = 0.25 A
Time constant, is given as:
T = L/R
T = (45 x 10⁻³) / (60)
T = 7.5 x 10⁻⁴ s
Change in current with respect to time, is given as;

Current in the circuit after 7 ms later:
t = 7 ms = 7 x 10⁻³ s

Therefore, the current in the circuit 7 ms later is 0.2499 A
Answer:
The maximum speed at which the car can safety travel around the track is 18.6m/s.
Explanation:
Since the car is in circular motion, there has to be a centripetal force
. In this case, the only force that applies for that is the static frictional force
between the tires and the track. Then, we can write that:

And since
and
, we have:

Now, if we write the vertical equation of motion of the car (in which there are only the weight and the normal force), we obtain:

Substituting this expression for
and solving for
, we get:

Finally, plugging in the given values for the coefficient of friction and the radius of the track, we have:

It means that in its maximum value, the speed of the car is equal to 18.6m/s.
Answer:
Hydrated iron(III) oxide, or ferric oxide
Explanation:
Answer: 20 m/s
Explanation:
P = mv
since we're trying to find the velocity, you change the formula to v = P/m
v = ?
P = 9 kgm/s
m = 0.45 kg
v = 9 kgm/s / 0.45kg = 20 m/s