The rate of reaction is always expressed in concentration per time like mol/L·s. The equation is:
r [mol/L·s] = kCⁿ, where n is the order of reaction. Since k is 1300/s, that means that Cⁿ = C such that (1/s)*(mol/L) = mol/L·s. Thus, n=1. For a first order reaction, the formula would be:
ln(A/A₀) = -kt
where
A is the amount of material after time t
A₀ is the amount of material at t=0
The half life is when A/A₀ = 1/2÷1 = 1/2. Thus, the half-life t is:
ln(1/2) = (-1300t)
t = 5.33×10⁻⁴ seconds
<h3>
Answer:</h3>
4 g AgCl
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Stoichiometry</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN] 2AgNO₃ + BaCl₂ → 2AgCl + Ba(NO₃)₂
[Given] 5.0 g AgNO₃
<u>Step 2: Identify Conversions</u>
[Reaction - Stoich] 2AgNO₃ → 2AgCl
Molar Mass of Ag - 107.87 g/mol
Molar Mass of N - 14.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of Cl - 35.45 g/mol
Molar Mass of AgNO₃ - 107.87 + 14.01 + 3(16.00) = 169.88 g/mol
Molar Mass of AgCl - 107.87 + 35.45 = 143.32 g/mol
<u>Step 3: Stoichiometry</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 1 sig fig.</em>
4.21533 g AgCl ≈ 4 g AgCl
Answer:
Average acceleration = - 2 m/s^2
Explanation: Have a nice day
<span>When two metals touch in the mouth, a small shock is created. this is known as a </span>galvanic action