It is Vitamin D, hope that helps
A. The longest carbon chain is eight, and it has two methyl groups attached to carbon three, and a special group attached to carbon five. Its two names could be:
3-dimethyl-5-(1-methylethyl)octane
3-dimethyl-5-isopropyloctane
Both of these are correct. This is an alkane, because it has all single bonds.
B. This has a triple bond contained between carbons 2 and 3, and has a methyl group off carbon 4. The longest chain is 5. It’s name is:
4-methyl-2-pentyne
This is an alkene, because of the double bond.
C. This has a double bond contained between carbons 2 and 3, and has a methyl off of four and an methyl off of six. The longest chain is eight (follow the longest chain of carbons).
4,6-dimethyl-2-octene
This is an alkene, because of the double bond.
D. This has an ethyl group at 1 and a methyl group at 2 (rotate the compound to make it as clean as possible, in this case, the ring is flipped and rotated to make it alphabetical with the smallest numbers possible). The two names are:
1-ethyl-2-methylbenzene
ortho-ethylmethylbenzene
Both are correct, the ortho prefix telling the location of the ethyl and methyl groups. This is an aromatic structure because of its double bonded ring.
E. The longest chain is nine, and has methyls at three, five, and seven, along with a propyl at five. The name is:
3,5,7-trimethyl-5-propylnonane
This is an alkane, due to the single bonds.
Hope this helps!
Answer:
1380 kilogram/cubic meter




The circulatory system works with the digestive system. Once the food is digested, the circulatory systems absorb and uses the nutrients in the food. If the digestive system were to break down, the circulatory will not have the nutrients it needs to sufficiently run the body.
When solid <span>iron (iii) hydroxide is dissolved into water, it ionizes or it dissociates into ions. These ions are the iron (iii) ions and the hydroxide ions. Iron(III) oxide is classified as a base when in aqueous solution since it produces hydroxide ions. It is a weak base so it does not completely dissociate into the solution. The dissociation equation would be:
Fe(OH)3 <-----> Fe3+ + OH-
To write a complete reaction, the reaction should be balanced wherein the number of atoms of each element in the reactant side and the product side should be equal. Also, the phases of the substances should be written. We do as follows:
</span>
Fe(OH)3 (s) <-----> Fe3+ (aq) + 3OH- (aq)