To solve this problem, we can simply calculate for the
dose by multiplying the volume of solution containing Selenium 75 and the
activity of the Selenium 75. That is:
dose = 4.1 mL * (45 μCi/mL)
dose = 184.5 μCi
1. 5 ethyl, 2 methyl octane
2. 1 ethyl, 2 methyl cyclopentane
3. 3,3,5,5- tetrafluoro heptane
4. 3,4-dimethyl hexene
5. 3,4-dimethyl cyclobutene
6. 3,5 diisopropyl cyclohexene
7. 3,3,4 trimethyl pentyne
8. 2,6 dibromo phenol
keep in mind that between 4-7, there could be #1 in front of the main name. for example with #4: 3,4-dimethyl-1- hexene. this honestly depends on the professor how he/she likes it. It is not necessary because if the number is not specified, it is assumed is #1
The coefficients in a chemical equation represent the molar ratio of the substances.
For example, if an equation says 2H2 + O2 ⇒ 2H2O, it means
2 moles of H2 + 1 mol of O2 ⇒ 2 moles of H2O.
The number of atoms in one mole of any substance is measured by Avogadro's number. The value of Avogadro's number is 6.023 x 10 ^23. It is named after scientist Avogadro who proposed this number. 12 grams of carbon-12 represents 1 mole of carbon-12. For this reason, the number of atoms present in 1 mole of any substance is 6.023 x 10 ^23. Therefore, the number of atoms present in 1 mole carbon-12 is 6.023 x 10^23.
(Answer) This unit is the number of atoms in 12 grams of carbon-12 and known as Avogadro's number.
Answer:
work out if it's either going to sink or float
Explanation:
this can be carried out by calculating the numbers