<span>49N is the force needed to give a .25 kg arrow an acceleration of 196m/s2. F =ma ⇒ =( 0.25kg)(196m/s2) = 49N if the arrow is shot horizontally where the applied force is entirely in the x-direction.</span>
Each vegetables and fruits will have different response to the varying temperature and atmospheric condition of the surrounding. Some may become rotten in a shorter period of time. In this regard the price would get lower in order for the goods to get sold easily.
Answer:
b) a = -k / m x
, c) d²x / dt² = - A w² cos (wt+Ф)
, d) and e) T = 2π √m / k
h) a = - A w² cos (wt+Ф)
Explanation:
a) see free body diagram in the attachment
b) We write Newton's second law
Fe = m a
-k x = ma
a = -k / m x
c) the acceleration is
a = d²x / dt²
If x = A cos wt
v = dx / dt = -A w sin (wt
+Ф)
a = d²x / dt² = - A w² cos (wt+Ф)
d) we substitute in Newton's second law
d²x / dt² = -k / m x
We call
w² = k / m
e) substitute to find w
-A w² cos (wt+Ф) = -k / m A cos (wt+Ф)
w² = k / m
Angular velocity and frequency are related
w = 2π f
f = 1 / T
We substitute
T = 2π / w
T = 2π √m / k
g) v= - A w sin (wt+Ф)
h) acceleration is
a = - A w² cos (wt+Ф)
Answer:
6 second
Explanation:
initial velocity of ball, u = 60 m/s
g = 10 m/s^2
Let the ball takes time t to reach at the maximum height
We know that at maximum height, the velocity of ball is zero.
v = 0 m/s
Use first equation of motion
v = u + gt
0 = 60 - 10 x t
t = 6 second
Thus, the ball takes 6 second to reach to maximum height.