1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
disa [49]
2 years ago
6

Hey guys, I don't know what this is. Any help?

Physics
1 answer:
Marizza181 [45]2 years ago
4 0
Real and reduced is the answer
You might be interested in
How many significant figures?<br> 5.0001<br> O None of these are correct<br> O 5<br> 02<br> 0 1
mezya [45]

5

if zero falls between two significant numbers it becomes significant.

6 0
3 years ago
A low resistance light bulb and a high resistance light bulb are connected in parallel with each other. Which bulb is brighter i
sweet [91]
<h2>Answer:</h2>

The bulb with low resistance will be brighter.

<h2>Explanation:</h2>

The brightness of a bulb is a function of both the voltage across the bulb and current flowing through the bulb. The higher the voltage, the higher the current. Hence the brighter the bulb.

Now, according to the question, the bulbs (the high resistance bulb and the low resistance bulb) are connected in parallel with each other. This means that the same voltage passes across them.

Also, we know that according to Ohm's law, the voltage (V) and current (I) through a conductor are related by the following equation;

V =  I x R                -------------------(i)

Where;

R is the resistance of the conductor.

We can re-write equation (i) as follows;

I = V / R               -----------------------(ii)

According to equation (ii), at fixed voltage (V), the current (I) will increase as the resistance (R) decreases.

Now, since the two bulbs have the same voltage, the bulb with the low resistance will allow a larger flow of current than the bulb with high resistance.  Therefore, as said earlier that brightness is dependent on voltage and current, the bulb with the low resistance (and having larger current at some voltage) will be brighter than the bulb with the high resistance (having smaller current at same voltage).

6 0
3 years ago
37 Questions - All Questions Are Required
ANTONII [103]
Acceleration = vf-vi /t
10-22/3=2.6m/s^2

5 0
3 years ago
Read 2 more answers
When a car crashes, do you think its speed can make a difference in the<br> amount of damage done?
Oduvanchick [21]

Answer:

Yes

Explanation:

An increased speed will result in an increased amount of energy, so when it crashes some of that energy will bounce back and crumple the car.

3 0
3 years ago
You throw a ball from the balcony onto the court in the basketball arena. You release the ball at a height of 7.00 m above the c
Mariana [72]

Answer:

Your friend has to wait 0.26 s after you throw the ball to start running.

Explanation:

The equation that gives the position vector of the ball is as follows:

r = (x0 + v0 · t · cos α, y0 + v0 · t ·sin α + 1/2 · g · t²)

Where:

x0 = initial horizontal positon

v0 = initial velocity

t = time

α = throwing angle

y0 = initial vertical position

g = acceleration due to gravity

The equation of displacement of your friend is as follows:

x = x0 + v0 · t + 1/2 · a · t²

Where:

x = position of your friend at time t

x0 = initial position

v0 = initial velocity

t = time

a = acceleration

Please, see the attached figure for a description of the situation. Notice that the frame of reference is located at the throwing point.

Let´s find the time of flight of the ball. We know that at the final time, the y-component of the vector r has to be -6.00 m (1 m above the ground). Then:

y = y0 + v0 · t ·sin α + 1/2 · g · t²

-6.00 m = 0 m + 9.00 m/s · t · sin 33.0° - 1/2 · 9.8 m/s² · t²

0 = -4.9 m/s² · t² + 9.00 m/s · sin 33.0° · t + 6.00 m

Solving the quadratic equation:

t = 1.71 s

Now that we have the time of flight, we can calculate the x-component of the vector r (the horizontal distance traveled by the ball):

x= x0 + v0 · t · cos α

x = 0m + 9.00 m/s · 1.71 s · cos 33°

x = 12.9 m

Then, your friend will have to run (12.9 m - 11.0 m) 1.9 m to catch the ball 1 m above the ground.

Let´s see, how much time it takes your friend to run that distance:

x = x0 + v0 · t + 1/2 · a · t²      (x0 = 0, v0 = 0)

x = 1/2 · a · t²

1.9 m = 1/2 · 1.80 m/s² · t²

Solving for t

t = 1.45 s

Then, since the time of flight of the ball is 1.71 s, your friend has to wait

1.71 s - 1.45 s = 0.26 s after you throw the ball to start running.

6 0
2 years ago
Other questions:
  • True or false an experiment in investigating the effects and development variable on the independent variable
    8·1 answer
  • In most cases, how many electrons does it take to completely fill the
    10·1 answer
  • a 0.0780 kg lemming runs off a 5.36 m high cliff at 4.84 m/s. what is its potential energy (PE) when it is 2.00 m above the grou
    6·1 answer
  • The X-ray source Cygnus X-1 has a mass of at least 11 solar masses and a diameter of only about one-quarter the diameter of the
    7·1 answer
  • A cylindrical test specimen with a 15-mm diameter is tested axially in tension. A 0.58 mm elongation is recorded in a length of
    6·1 answer
  • adeen says that you can increase the resistance of a copper wire by hammering the wire to make it narrower and longer. Arnell sa
    5·1 answer
  • A.
    13·1 answer
  • Question 1 of 5<br> In which way are electromagnetic waves different from mechanical waves?
    8·2 answers
  • Would a 2021 Ford Mustang GT be light weight or heavy weight?​
    14·1 answer
  • Calculate the velocity of an apple that falls freely from rest and drops for 3.5 seconds.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!