In order to escape the gravitational pull of our planet, any object must have an escape velocity of 7 km/s or more, anything lower than that will be slowed down by the pull of gravity, and will eventually returned to the surface of our planet. It is independent of mass, any lighter or heavier object must attain the required escaped velocity to reach space.
Answer:
The maximum potential difference is 186.02 x 10¹⁵ V
Explanation:
formula for calculating maximum potential difference

where;
Ke is coulomb's constant = 8.99 x 10⁹ Nm²/c²
k is the dielectric constant = 2.3
b is the outer radius of the conductor = 3 mm
a is the inner radius of the conductor = 0.8 mm
λ is the linear charge density = 18 x 10⁶ V/m
Substitute in these values in the above equation;

Therefore, the maximum potential difference this cable can withstand is 186.02 x 10¹⁵ V
Answer:
a) 2.87 m/s
b) 3.23 m/s
Explanation:
The avergare velocity can be found dividing the length traveled d by the total time t.
a)
For the first part we easily know the total traveled length which is:
d = 50.2 m + 50.2 m = 100.4 m
The time can be found dividing the distance by the velocity:
t1 = 50.2 m / 2.21 m/s = 22.7149 s
t2 = 50.2 m / 4.11 m/s = 12.2141 s
t = t1 +t2 = 34.9290 s
Therefore, the average velocity is:
v = d/t =2.87 m/s
b)
Here we can easily know the total time:
t = 1 min + 1.16 min = 129.6 s
Now the distance wil be found multiplying each velocity by the time it has travelled:
d1 = 2.21 m/s * 60 s = 132.6 m
d2 = 4.11 m/s *(1.16 * 60 s) = 286.056 m
d = 418.656 m
Therefore, the average velocity is:
v = d/t =3.23 m/s
Whatever distance north and then west you walked, you are then
(1.41 x that distance)
northwest of where you started.
Answer:heed
Explanation:
heed knows how to divide.