Answer:
21 psi
Explanation:
The weight of the car is:
W = mg
W = 1000 kg * 9.8 m/s²
W = 9800 N
Divided by 4 tires, each tire supports:
F = W/4
F = 9800 N / 4
F = 2450 N
Pressure is force divided by area, so:
P = F / A
P = (2450 N) / (0.13 m × 0.13 m)
P ≈ 145,000 Pa
101,325 Pa is the same as 14.7 psi, so:
P ≈ 145,000 Pa × (14.7 psi / 101,325 Pa)
P ≈ 21 psi
Answer:
160.75 N
Explanation:
The downward velocity has no effect on the force situation, it is only changes in velocity (plus, of course, gravity, which is always there) that require a force. At constant velocity, the bottom spring s_3 is supporting its mass m_3 to balance gravity.
As the elevator slows, though, it also ends up slowing down the spring arrangement, too. However, because the stretching takes time, it means that some damped harmonic motion will be set up in the spring chain.
When the motion has finally damped out, the net force the bottom spring s3 exerts on m3 has two components--that of gravity and of the deceleration of the elevator:
F_3net = m3 * (g + a) = 10.5×(9.81+5.5)= 10.5×15.31= 160.75 N
Current would flow between them and they would receive a terrible shock.