Answer:
Attached is the complete question but the weight of the mailbox and cross bar differs from the given values which are : weight of mail box = 3.2 Ib, weight of the uniform cross member = 10.3 Ib
Answer : moment of inertia = 186.7 Ib - in
Explanation:
Given data
weight of the mailbox = 3.2 Ib
weight of the uniform cross member = 10.3 Ib
The origin is of mailbox and cross member is 0
The perpendicular distance from Y axis of centroid of the mailbox
= 4 + (25/2) = 16.5"
The centroid of the bar =( ( 1 + 25 + 4 + 4 ) / 2 ) - 4 = 13"
therefore The moment of Inertia( Mo) = (3.2 * 16.5) + ( 10.3 * 13)
= 52.8 + 133.9 = 186.7 Ib-in
Answer:
Tech A is correct
Explanation:
Tech A is right as its V- angle is identified by splitting the No by 720 °. Of the piston at the edge of the piston.
Tech B is incorrect, as the V-Angle will be 720/10 = 72 for the V-10 motor, and he says 60 °.
Numerical weather prediction (NWP) uses mathematical models of the atmosphere and oceans to predict the weather based on current weather conditions. Though first attempted in the 1920s, it was not until the advent of computer simulation in the 1950s that numerical weather predictions produced realistic results. A number of global and regional forecast models are run in different countries worldwide, using current weather observations relayed from radiosondes, weather satellites and other observing systems as inputs.
Answer:
vapor fraction = 0.4 and 0.08
Explanation:
At reasonably high temperatures, a mixture will exist in the form of a sub cooled liquid. Between these extremes, the mixture exists in a two phrase region where it is a vapor liquid equilibrium. From a vapor-liquid phase diagram, a mixture of 40% A, 39% B, and 21% C separates to give the vapor compositions of 0.4 and 0.08.
Answer:
Electroosmotic velocity will be equal to 
Explanation:
We have given applied voltage v = 100 volt
Length of capillary L = 5 mm = 0.005 m
Zeta potential of the capillary surface 
Dielectric constant of glass is between 5 to 10 here we are taking dielectric constant as 
Viscosity of glass is 
Electroosmotic velocity is given as 

So Electroosmotic velocity will be equal to 