The correct answer to the question is : C) The horizontal momentum and the vertical momentum are both conserved.
EXPLANATION :
Before coming into any conclusion, first we have to understand the law of conservation of momentum.
As per the law of conservation of momentum, the total linear as well as angular momentum of an isolated system is always conserved . The law of conservation of energy is a universal fact.
Hence, during any type of collision, the total momentum is always conserved.
Hence, the total horizontal momentum as well as total vertical momentum are always conserved during both elastic as well as inelastic collision.
Answer:
The image result of an object reflected by a convex mirror is typically virtual, upright, and smaller. Discover how moving the object farther away from the mirror's surface affects the size of the virtual image formed behind the mirror
Explanation:
A) The biggest astronomical object is the Universe, which contains billions of galaxies among which there is the Milky Way.
The Milky Way contains thousands of planetary systems, among which the Solar System.
The Solar System contains many <span>planets <span>(but only one star, the Sun)</span>,</span> among which there is Earth.
Therefore you can label:
A = Universe, B = Milky Way, C = Solar system, D = Earth
b) Given what we said before, you could label D also any other planet in the Solar System, therefore you can choose among Mercury, Venus, Mars, Jupiter, Saturn, Uranus, and Neptune.
The distance travelled by the ball that is thrown horizontally from a window that is 15.4 meters high at a speed of 3.01 m/s is 5.34 m
s = ut + 1 / 2 at²
s = Distance
u = Initial velocity
t = Time
a = Acceleration
Vertically,
s = 15.4 m
u = 0
a = 9.8 m / s²
15.4 = 0 + ( 1 / 2 * 9.8 * t² )
t² = 3.14
t = 1.77 s
Horizontally,
u = 3.01 m / s
a = 0 ( Since there is no external force )
s = ( 3.01 * 1.77 ) + 0
s = 5.34 m
Therefore, the distance travelled by the ball before hitting the ground is 5.34 m
To know more about distance travelled
brainly.com/question/12696792
#SPJ1