Answer:
a= 92. 13 m/s²
Explanation:
Given that
Amplitude ,A= 0.165 m
The maximum speed ,V(max) = 3.9 m/s
We know that maximum velocity in the SHM given as
V(max) = ω A
ω=Angular speed
A=Amplitude

ω=23.63 rad/s
The maximum acceleration given as
a = ω² A
a= (23.63)² x 0.165 m/s²
a= 92. 13 m/s²
Therefore the maximum magnitude of the acceleration will be 92. 13 m/s².
Time required : 3 s
<h3>Further explanation
</h3>
Power is the work done/second.

To do 33 J of work with 11 W of power
P = 11 W
W = 33 J

<h2>Right answer: acceleration due to gravity is always the same </h2><h2 />
According to the experiments done and currently verified, in vacuum (this means there is not air or any fluid), all objects in free fall experience the same acceleration, which is <u>the acceleration of gravity</u>.
Now, in this case we are on Earth, so the gravity value is
Note the objects experience the acceleration of gravity regardless of their mass.
Nevertheless, on Earth we have air, hence <u>air resistance</u>, so the afirmation <em>"Free fall is a situation in which the only force acting upon an object is gravity" </em>is not completely true on Earth, unless the following condition is fulfiled:
If the air resistance is <u>too small</u> that we can approximate it to <u>zero</u> in the calculations, then in free fall the objects will accelerate downwards at
and hit the ground at approximately the same time.
Answer:
As the concentration of a solute in a solution increases, the freezing point of the solution <u><em>decrease </em></u>and the vapor pressure of the solution <em><u>decrease </u></em>.
Explanation:
Depression in freezing point :

where,
=depression in freezing point =
= freezing point constant
m = molality ( moles per kg of solvent) of the solution
As we can see that from the formula that higher the molality of the solution is directly proportionate to the depression in freezing point which means that:
- If molality of the solution in high the depression in freezing point of the solution will be more.
- If molality of the solution in low the depression in freezing point of teh solution will be lower .
Relative lowering in vapor pressure of the solution is given by :

= Vapor pressure of pure solvent
= Vapor pressure of solution
= Mole fraction of solute

Vapor pressure of the solution is inversely proportional to the mole fraction of solute.
- Higher the concentration of solute more will the be solute's mole fraction and decrease in vapor pressure of the solution will be observed.
- lower the concentration of solute more will the be solute's mole fraction and increase in vapor pressure of the solution will be observed.