<h2>Potential energy lost by 10 N rock will be greater</h2>
Explanation:
Two rocks of 5N and 10N falls from the same height . Thus they will loose the potential energy.
The potential energy lost = mass x acceleration due to gravity x height
The potential energy lost by first 5 N rock = 5 h
Because weight of rock m g = 5 N
Similarly , the potential energy lost by 10 N Rock = 10 h
here weight of rock m g = 10 N
Thus comparing these two , the potential energy lost by 10 N rock is greater than that of 5 N rock .
Answer:
you have probably missed some details in the question.
Answer:
v = √ 2 G M/
Explanation:
To find the escape velocity we can use the concept of mechanical energy, where the initial point is the surface of the earth and the end point is at the maximum distance from the projectile to the Earth.
Initial
Em₀ = K + U₀
Final
= 
The kinetic energy is k = ½ m v²
The gravitational potential energy is U = - G m M / r
r is the distance measured from the center of the Earth
How energy is conserved
Em₀ = 
½ mv² - GmM /
= -GmM / r
v² = 2 G M (1 /
– 1 / r)
v = √ 2GM (1 /
– 1 / r)
The escape velocity is that necessary to take the rocket to an infinite distance (r = ∞), whereby 1 /∞ = 0
v = √ 2GM /
Answer:
The value is
Explanation:
From the we are told that
The initial speed of the object is
The greatest height it reached is 
Generally from kinematic equation we have that

At maximum height v = 0 m/s
So

=> 
Here H is the height from the initial height to the maximum height
So the initial height is mathematically represented as

=> 
=> 
Generally the time taken for the object to reach maximum height is mathematically evaluated using kinematic equation as follows

At maximum height v = 0 m/s

=> 
Generally the time taken for the object to move from the maximum height to the ground is mathematically using kinematic equation as follows

Here the initial velocity is 0 m/s given that its the velocity at maximum height
Also g is positive because we are moving in the direction of gravity
So

=> 
Generally the total time taken is mathematically represented as

=> 
=>
Answer:
1.07 nT
Explanation:
We know that E/B = c where E = electric field amplitude = 320 mV/m = 0.32 V/m, B = magnetic field amplitude and c = speed of light = 3 × 10⁸ m/s.
So, B = E/c
Substituting E and c into B, we have
B = E/c
= 0.32 V/m ÷ 3 × 10⁸ m/s
= 0.1067 × 10⁻⁸ T
= 1.067 × 10⁻⁹ T
= 1.067 nT
≅ 1.07 nT