Answer:
625 W
Explanation:
Applying
P = W/t.................... Equation 1
Where p = power, W = Work, t = time
But,
W = Force (F) × distance (d)
W = Fd........................ Equation 2
Substitute equation 2 into equation 1
P = Fd/t.................... Equation 3
From the question,
Given: F = 5000 N, d = 30 m, t = 4 munites = (4×60) seconds = 240 seconds
Substitute these values into equation 3
P = (5000×30)/240
P = 625 Watt
You are given a fixed rate of 15.9 cm³/s. You are also given with the amount of volume in 237 cm³. Through the approach of dimensional analysis, you can manipulate through operations such that the end result of the units must be in seconds. The solution is as follows:
237 cm³ * (1 s/15.9 cm³) = 14.9 seconds
Answer:
The answer to your question is given below.
Explanation:
Mechanical advantage (MA) = Load (L)/Effort (E)
MA = L/E
Velocity ratio (VR) = Distance moved by load (l) / Distance moved by effort (e)
VR = l/e
Efficiency = work done by machine (Wd) /work put into the machine (Wp) x 100
Efficiency = Wd/Wp x100
Recall:
Work = Force x distance
Therefore,
Work done by machine (wd) = load (L) x distance (l)
Wd = L x l
Work put into the machine (Wp) = effort (E) x distance (e)
Wp = E x e
Note: the load and effort are measured in Newton (N), while the distance is measured in metre (m)
Efficiency = Wd/Wp x100
Efficiency = (L x l) / (E x e) x 100
Rearrange
Efficiency = L/E ÷ l/e x 100
But:
MA = L/E
VR = l/e
Therefore,
Efficiency = L/E ÷ l/e x 100
Efficiency = MA ÷ VR x 100
Efficiency = MA / VR x 100
Answer:
the answer will be 24.40 ohms law
Explanation:
The electrical force between these two charges remains the
same. In coulomb’s law, it states that the magnitude of two charges (product of
two charges) is inversely proportional to the square of the distance. Since both
the magnitude and the distance are halved, therefore, the change in both quantities
will have no effect in the value of electrical force.