<span>Autotrophic plants do not require "Oxygen" as it is a waste product of the process of photosynthesis which they do.
In short, Your Final Answer would be Option D
Hope this helps!</span>
After the great 1906 San Francisco earthquake, geolophysicistHarry Fielding Reid examined the displacement of the ground surface along the San Andreas Fault. He concluded that the quake must have been the result of the elastic reboundof the strain energy in the rocks on either side of the fault.
strain energy is 0. 5x force x (compression) X (compression)
There is a lot of force and a bit of compression when rocks squash up against other rocks causing earthquakes
Answer:
W = 1.432 KJ
Explanation:
given,
mass = 22.2 Kg
angle of the rope = 27.5°
distance on the ground = 24 m
kinetic friction= μ = 0.32
acceleration due to gravity, g = 9.8 m/s²
Work done = ?
W = F d cosθ
a = 0 because it is moving with constant speed
equating all the forces acting in x direction
F cosθ = F friction = μN
equating all the forces acting in y direction
F sinθ + N -mg =0
now,
N = mg - F sinθ
putting value of N
F cosθ = μ mg -μ F sinθ
F (cosθ + μsinθ ) = μ mg


F =67.28 N
now,
W=F d cosθ
W =67.28 x 24 x cos(27.5)
W =1432.27 J
W = 1.432 KJ
1 horsepower is equal to 746 W, so the power of the engine is

The power is also defined as the energy E per unit of time t:

Where the energy corresponds to the work done by the engine, which is

. Re-arranging the formula, we can calculate the time t needed to do this amount of work:
Pressure at a given surface is given as ratio of normal force and area
so here force due to heel of the shoes is given as 80 N
and the area of the heel is given as 16 cm^2
so we can say

here we have
F = 80 N



so pressure at the surface due to its heel will be 5 * 10^4 N/m^2