The law of conservation of angular momentum.
What is angular momentum?
Angular momentum is the rotational analog of linear momentum in physics. It is a conserved quantity, meaning the total angular momentum of a closed system remains constant. Both the direction and magnitude of angular momentum are conserved.
What is the law of conservation of angular momentum?
The law of conservation of angular momentum asserts that a system's total angular momentum is conserved when there is no external torque present. In other words, the magnitude and direction of the total angular momentum of an isolated system remain constant.
According to the Nebular Theory, the solar system originated as a massive, slowly rotating cloud of gas measuring around one light-year in diameter. As the cloud cooled, its own gravity caused it to collapse. It distorted into a revolving pancake shape due to the conservation of angular momentum, which required it to spin faster as it shrank.
Hence, the law of conservation of angular momentum best explains why the solar nebula spun faster as it shrank in size.
To leans more about the law of angular momentum link is given:
brainly.com/question/26870978?
#SPJ4
Sun is the main source of energy
Answer:
a)V= 0.0827 m³
b)P=181.11 x 10² N/m²
Explanation:
Given that
m = 81.5 kg
Density ,ρ = 985 kg/m³
As we know that
Mass = Volume x Density
81.5 = V x 985
V= 0.0827 m³
The force exerted by weight = m g
F= m g= 81.5 x 10 = 815 N ( Take ,g= 10 m/s²)
Area ,A= 4.5 x 10⁻² m²
The Pressure P


P=181.11 x 10² N/m²
Answer:
Explanation:
Given
mass of wheel m=13 kg
radius of wheel=1.8 m
N=469 rev/min

t=16 s
Angular deceleration in 16 s


Moment of Inertia 
Change in kinetic energy =Work done
Change in kinetic Energy

(a)Work done =50.79 kJ
(b)Average Power
