A beta particle is an electron and it has a -1 charge and zero mass.
Beta decay by
emitting an electron is called as β⁻
decay. When this happens, a neutron of the element converts into a proton by
emitting an electron. Hence, the mass of daughter nucleus is same as parent
atom but atomic number/number of protons is higher by 1 than atomic number of
parent atom.
In a β⁻ decay, the symbol is used as ₋₁⁰β or ₋₁⁰e.
-1 is for charge
<span> 0 is for the mass of the particle
</span>
<u>Answer:</u> The mass of nitrogen gas reacted to produce given amount of energy is 5.99 grams.
<u>Explanation:</u>
The given chemical reaction follows:

We know that:
Molar mass of nitrogen gas = 28 g/mol
We are given:
Enthalpy change of the reaction = 14.2 kJ
To calculate the mass of nitrogen gas reacted, we use unitary method:
When enthalpy change of the reaction is 66.4 kJ, the mass of nitrogen gas reacted is 28 grams.
So, when enthalpy change of the reaction is 14.2 kJ, the mass of nitrogen gas reacted will be = 
Hence, the mass of nitrogen gas reacted to produce given amount of energy is 5.99 grams.
The pressure in atm exerted by 1 mole of methane placed into a bulb with a volume of 244.6 mL at 25°C is 101.94atm.
<h3>How to calculate pressure?</h3>
The pressure of an ideal gas can be calculated using the following formula:
PV = nRT
Where;
- P = pressure
- V = volume
- n = number of moles
- R = gas law constant
- T = temperature
According to information in this question;
- T = 25°C = 25 + 273 = 298K
- V = 244.6mL = 0.24L
- R = 0.0821 Latm/Kmol
P × 0.24 = 1 × 0.0821 × 298
0.24P = 24.47
P = 24.47/0.24
P = 101.94atm
Therefore, the pressure in atm exerted by 1 mole of methane placed into a bulb with a volume of 244.6 mL at 25°C is 101.94atm.
Learn more about pressure at: brainly.com/question/11464844
False, in an exothermic reaction, an increase in temperature does not favor the formation of products. Instead, it favors the backward reaction. An exothermic reaction is a reaction where energy is transferred from the system out to the environment.