Answer:
The correct options are;
C. Alternating current and direct current
E. Electrolyte
Explanation:
Electricity is generated in either AC or DC depending on the source of the energy which aids the electricity generation;
The most common method through which electricity is generated and through which the principle of electric generation was discovered by Michael Faraday, is the rotation of a wire loop or coil between the North and South poles of a magnet to produce Alternating Current
Electricity is also generated in Direct Current by solar cells which convert sunlight into electric energy by photovoltaic effect.
20. Electrolysis is a chemical reaction that is brought about by the application or passing of a direct electric current through an electrolyte, which is an ion containing liquid.
Answer:
Q = -68.859 kJ
Explanation:
given details
mass 
initial pressure P_1 = 104 kPa
Temperature T_1 = 25 Degree C = 25+ 273 K = 298 K
final pressure P_2 = 1068 kPa
Temperature T_2 = 311 Degree C = 311+ 273 K = 584 K
we know that
molecular mass of 
R = 8.314/44 = 0.189 kJ/kg K
c_v = 0.657 kJ/kgK
from ideal gas equation
PV =mRT






WORK DONE

w = 586*(0.1033 -0.514)
W =256.76 kJ
INTERNAL ENERGY IS



HEAT TRANSFER

= 187.902 +(-256.46)
Q = -68.859 kJ
This question is incomplete, the complete question is;
For a steel alloy it has been determined that a carburizing heat treatment of 11.3 h duration at Temperature T1 will raise the carbon concentration to 0.44 wt% at a point 1.8 mm from the surface. A separate experiment is performed at T2 that doubles the diffusion coefficient for carbon in steel.
Estimate the time necessary to achieve the same concentration at a 4.9 mm position for an identical steel and at the same carburizing temperature T2.
Answer:
the required time to achieve the same concentration at a 4.9 is 83.733 hrs
Explanation:
Given the data in the question;
treatment time t₁ = 11.3 hours
Carbon concentration = 0.444 wt%
thickness at surface x₁ = 1.8 mm = 0.0018 m
thickness at identical steel x₂ = 4.9 mm = 0.0049 m
Now, Using Fick's second law inform of diffusion
/ Dt = constant
where D is constant
then
/ t = constant
/ t₁ =
/ t₂
t₂ = t₁
t₂ = t₁
/ 
t₂ = (
/
)t₁
t₂ =
/
× t₁
so we substitute
t₂ =
0.0049 / 0.0018
× 11.3 hrs
t₂ = 7.41 × 11.3 hrs
t₂ = 83.733 hrs
Therefore, the required time to achieve the same concentration at a 4.9 is 83.733 hrs
Answer:
COP of the heat pump is 3.013
OP of the cycle is 1.124
Explanation:
W = Q₂ - Q₁
Given
a)
Q₂ = Q₁ + W
= 15 + 7.45
= 22.45 kw
COP = Q₂ / W = 22.45 / 7.45 = 3.013
b)
Q₂ = 15 x 1.055 = 15.825 kw
therefore,
Q₁ = Q₂ - W
Q₁ = 15.825 - 7.45 = 8.375
∴ COP = Q₁ / W = 8.375 / 7.45 = 1.124