Answer:
Examples of reciprocating motion in daily life are;
1) The needles of a sewing machine
2) Electric powered reciprocating saw blade
3) The motion of a manual tire pump
Explanation:
A reciprocating motion is a motion that consists of motion of a part in an upward and downwards
or in a backward and forward (↔) direction repetitively
Examples of reciprocating motion in daily life includes the reciprocating motion of the needles of a sewing machine and the reciprocating motion of the reciprocating saw and the motion of a manual tire pump
In a sewing machine, a crank shaft in between a wheel and the needle transforms the rotary motion of the wheel into reciprocating motion of the needle.
Answer:
Pressure = 11.38 psi
Force = 13.981 Ibf
Explanation:
Step by step solution is in the attached document.
Answer:
The temperature T= 648.07k
Explanation:
T1=input temperature of the first heat engine =1400k
T=output temperature of the first heat engine and input temperature of the second heat engine= unknown
T3=output temperature of the second heat engine=300k
but carnot efficiency of heat engine =
where Th =temperature at which the heat enters the engine
Tl is the temperature of the environment
since both engines have the same thermal capacities <em>
</em> therefore 
We have now that

multiplying through by T

multiplying through by 300
-
The temperature T= 648.07k
Answer:
6.6 kilo volts = 6.6 k volts
Explanation:
A prefix is a word, number or a letter that is added before another word. In physics we have different prefixes for the exponential powers of 10, that are placed before units in place of those powers. Some examples are:
deci (d) ------ 10⁻¹
centi (c) ------ 10⁻²
milli (m) ------ 10⁻³
kilo (k) ------ 10³
mega (M) ----- 10⁶
giga (G) ------ 10⁹
We have:
6600 volts
converting to exponential form:
=> 6.6 x 10³ volts
Thus, we know that the prefix of kilo (k) is used for 10³.
Hence,
=> <u>6.6 kilo volts = 6.6 k volts</u>
Answer:
(a) Surface energy is greater than grain boundary energy due to the fact that the bonds of the atoms on the surface are lower than those of the atoms at the grain boundary. The energy is also directly proportional to the number of bonds created.
(b) The energy of a high-angle grain boundary is higher than that of a small-angle grain boundary because the high-angle grain boundary has a higher misalignment and smaller number of bonds than a small-angle grain boundary.
Explanation:
(a) Surface energy is greater than grain boundary energy due to the fact that the bonds of the atoms on the surface are lower than those of the atoms at the grain boundary. The energy is also directly proportional to the number of bonds created.
(b) The energy of a high-angle grain boundary is higher than that of a small-angle grain boundary because the high-angle grain boundary has a higher misalignment and smaller number of bonds than a small-angle grain boundary.