Distance is a scalar and measured only by units (meters, feet). Position is a vector and depends on where the origin is. It can be negative or positive and has direction.
Answer:
Explanation:
Given that,
Radius r = 15cm = 0.15m
Area of the circular loop can be determined using the formula for area of a circle
A = π r²
A = π × 0.15²
A = 0.0708 m²
Magnetic field B = 1.2T in positive z direction
B = 1.2 •k T.
If loop is remove from the field in the time interval
∆t = 2.3ms = 2.3×10^-3s
We want to find the average EMF and it is given as
ε = —∆Φ/∆t
The final flux is zero
Φf = 0
Where magnetic flux is given as
Φi = BA Cosθ
Where θ=0 since the area and the magnetic field point in the same direction.
Φi = BA Cos0
Φi = BA
Φi = 1.2 × 0.0708
Φi = 0.0848 Vs
Then, ε = —∆Φ/∆t
ε = —(Φf — Φi) / ∆t
ε = —(0-0.0848) / (2.3×10^-3)
ε = 0.0848 / (2.3×10^-3)
ε = 36.88 V
The EMF is 36.88 Volts
Answer:
<em>The period of the motion will still be equal to T.</em>
<em></em>
Explanation:
for a system with mass = M
attached to a massless spring.
If the system is set in motion with an amplitude (distance from equilibrium position) A
and has period T
The equation for the period T is given as

where k is the spring constant
If the amplitude is doubled, the distance from equilibrium position to the displacement is doubled.
Increasing the amplitude also increases the restoring force. An increase in the restoring force means the mass is now accelerated to cover more distance in the same period, so the restoring force cancels the effect of the increase in amplitude. Hence, <em>increasing the amplitude has no effect on the period of the mass and spring system.</em>