Ph 2 will ahve more strength due to the fact that its more acidic compared to pH 5.
the lower the number of a pH, the more it is heading towards being acidic, but the higher the number, the more it heads towards being an alkali. here is a ppt i made along time ago. hope it can help you . have a nice day
Answer:
The given equation obey the law of conservation of mass.
Explanation:
Chemical equation:
2LiOH + CO₂ → Li₂CO₃ + H₂O
There are equal number of atoms of oxygen, hydrogen and lithium on both side of equation so it obey the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
2LiOH + CO₂ → Li₂CO₃ + H₂O
2(6.941 + 16 + 1) + 12+32 6.941×2 + 12 + 3×16 + 18
47.882 + 44 13.882 +12+48 + 18
91.882 g 91.882 g
The mass of reactants and product are equal.
The equation of state for a hypothetical ideal gas is known as the ideal gas law, sometimes known as the general gas equation. i.e. PV = nRT or P1V1 = P2V2.
- According to the ideal gas law, the sum of the absolute temperature of the gas and the universal gas constant is equal to the product of the pressure and volume of one gram of an ideal gas.
- Robert Boyle, Gay-Lussac, and Amedeo Avogadro's observational work served as the basis for the ideal gas law. The Ideal gas equation, which simultaneously describes every relationship, is obtained by combining all of their observations into a single statement.
- When applying the gas constant R = 0.082 L.atm/K.mol, pressure, volume, and temperature should all be expressed in units of atmospheres (atm), litres (L), and kelvin (K).
- At high pressure and low temperature, the ideal gas law basically fails because molecule size and intermolecular forces are no longer negligible but rather become significant considerations.
Learn more about ideal gas law here:
brainly.com/question/26040104
#SPJ9
Answer:
Metallic Bonding
Explanation:
Metallic Bonding
In metallic bonds, the valence electrons from the s and p orbitals of the interacting metal atoms delocalize. That is to say, instead of orbiting their respective metal atoms, they form a “sea” of electrons that surrounds the positively charged atomic nuclei of the interacting metal ions.
Answer:
8.9 mg/l
Explanation: Temp doesnt matter so throw that out automatically then your equation is;
S1/P1=S2/P2
We are looking for S2 and that equation is;
S2=S1*P2/P1 and that is S2=22.25*1/2.5
A little bit of simple math and you get your answer: 8.9 mg/l