Answer:
X 154
Check solution in explanation
Explanation:
Average atomic mass = ( mass 1× abudance) + ( mass 2× abudance)+ ( mass 3× abudance) / 100
(149×13.8)+(152×44.9) +(154×41.3)/100
2056.2 + 6824.8 + 6360.2/100
=152.412
Answer:
T = 215.33 °C
Explanation:
The activation energy is given by the Arrhenius equation:

<u>Where:</u>
k: is the rate constant
A: is the frequency factor
Ea: is the activation energy
R: is the gas constant = 8.314 J/(K*mol)
T: is the temperature
We have for the uncatalyzed reaction:
Ea₁ = 70 kJ/mol
And for the catalyzed reaction:
Ea₂ = 42 kJ/mol
T₂ = 20 °C = 293 K
The frequency factor A is constant and the initial concentrations are the same.
Since the rate of the uncatalyzed reaction (k₁) is equal to the rate of the catalyzed reaction (k₂), we have:

(1)
By solving equation (1) for T₁ we have:
Therefore, we need to heat the solution at 215.33 °C so that the rate of the uncatalyzed reaction is equal to the rate of the catalyzed reaction.
I hope it helps you!
Answer:
a) FePO4(s)⇄Fe^3+(aq) + PO4^3-(aq)
b) ZnCO3(s)⇄Zn^2+(aq) + CO3^2-(aq)
c) NH4Cl(s)⇄ NH4^+(aq) + Cl^-(aq)
Explanation:
An ionic solid simply means a solid substance that is held together by ionic bonds. When an ionic substance is added to water, the ions interact with the dipoles in water and is pulled apart to form the constituent cation and anion present in the ionic solid. This is the process that we have referred to as dissolution.
The Ksp of an ionic solid is obtained from the chemical equation that shows the dissolution of an ionic solid in water. The Ksp is actually an equilibrium constant that shows the extent of dissolution of an ionic solid in water.
a) FePO4(s)⇄Fe^3+(aq) + PO4^3-(aq)
b) ZnCO3(s)⇄Zn^2+(aq) + CO3^2-(aq)
c) NH4Cl(s)⇄ NH4^+(aq) + Cl^-(aq)
Answer:
The answer to your question is below
Explanation:
Polyatomic ions are ions composed for more than 1 atom. There are polyanions and polycations.
Polyanions have a negative charge and polycations have a positive charge.
Examples
Polyanions Polycations
acetate CH₃COO⁻ ammonium NH₄⁺¹
bromate BrO₃⁻
chlorate ClO₃⁻
hydroxide OH⁻
nitrate NO₃⁻
nitrite NO₂⁻
sulfate SO₄⁻²
phosphate PO₄⁻³
permanganate MnO₄⁻
We write parentheses before or after a polyatomic ion to emphasize that the oxidation number of the atom which interacts with it affects all the atoms that form part of the polyatomic ion.