1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
siniylev [52]
1 year ago
13

A single Oreo cookie provides 53 kcal of energy. An athlete does an exercise that involves repeatedly lifting (without accelerat

ion) a 100-kilogram weight 2-decimeters above the ground with an energy efficiency of 25%. How many repetitions can she do with the energy supplied from a single Oreo cookie? What happens to the number of repetitions that can be done if the efficiency increases?
Physics
1 answer:
Sever21 [200]1 year ago
4 0

Answer:

Approximately 325 (rounded down,) assuming that g = 9.81\; {\rm N \cdot kg^{-1}}.

The number of repetitions would increase if efficiency increases.

Explanation:

Ensure that all quantities involved are in standard units:

Energy from the cookie (should be in joules, {\rm J}):

\begin{aligned} & 53\; {\rm kCal} \times \frac{1\; {\rm kJ}}{4.184\; {\rm kCal}} \times \frac{1000\; {\rm J}}{1\; {\rm kJ}} \approx 2.551 \times 10^{5}\; {\rm J} \end{aligned}.

Height of the weight (should be in meters, {\rm m}):

\begin{aligned} h &= 2\; {\rm dm} \times \frac{1\; {\rm m}}{10\; {\rm dm}} = 0.2\; {\rm m}\end{aligned}.

Energy required to lift the weight by \Delta h = 0.2\; {\rm m} without acceleration:

\begin{aligned} W &= m\, g\, \Delta h \\ &= 100\; {\rm kg} \times 9.81\; {\rm N \cdot kg^{-1}} \times 0.2\; {\rm m} \\ &= 196\; {\rm N \cdot m} \\ &= 196\; {\rm J} \end{aligned}.

At an efficiency of 0.25, the actual amount of energy required to raise this weight to that height would be:

\begin{aligned} \text{Energy Input} &= \frac{\text{Useful Work Output}}{\text{Efficiency}} \\ &= \frac{196\; {\rm J}}{0.25} \\ &=784\; {\rm J}\end{aligned}.

Divide 2.551 \times 10^{5}\; {\rm J} by 784\; {\rm J} to find the number of times this weight could be lifted up within that energy budget:

\begin{aligned} \frac{2.551 \times 10^{5}\; {\rm J}}{784\; {\rm J}} &\approx 325 \end{aligned}.

Increasing the efficiency (the denominator) would reduce the amount of energy input required to achieve the same amount of useful work. Thus, the same energy budget would allow this weight to be lifted up for more times.

You might be interested in
A snowboarder goes down the hill with a slope of 28° if friction acts on him as he slides down which of the following is the cor
xxMikexx [17]

Answer:

A

Explanation:

All of the frictions are the same, but weight always goes straight down so it can only be A or B. Since they are going down a slope, then the normal force must be sloped. A is the only one out of A and B with a sloped normal force, so it has to be A

6 0
3 years ago
Newtons third law says that if Robert exerts a _______ of 1000 Newtons on an object, it will exert an equal and opposite _______
Free_Kalibri [48]

Answer: force, force

Explanation:

Newton’s third law states that there is an equal and opposite force

I took the test too

7 0
3 years ago
3
Nikitich [7]

Answer:

Protons and Neutrons are found in the nucleus and the electrons are found on the outside of the nucleus

Explanation:

Hope this helps

7 0
3 years ago
What is the voltage across a semiconductor bar if the current through it is 0.17 A? The electron concentration in the bar is 2.7
Anastaziya [24]

Answer:

The voltage across a semiconductor bar is 0.068 V.

Explanation:

Given that,

Current = 0.17 A

Electron concentration n= 2.7\times10^{18}\ cm^{-3}

Electron mobility \mu=1000 cm^2/Vs

Length = 0.1 mm

Area = 500 μm²

We need to calculate the resistivity

Using formula of resistivity

\sigma=n\times q\times \mu

\rho=\dfrac{1}{\sigma}

Put the value into the formula

\rho=\dfrac{1}{2.7\times10^{18}\times10^{6}\times1.6\times10^{-19}\times1000\times10^{-4}}

\rho=2\ \mu \Omega m

We need to calculate the resistance

Using formula of resistance

R=\dfrac{\rho l}{A}

R=\dfrac{2\times10^{-6}\times0.1\times10^{-3}}{500\times(10^{-6})^2}

R=0.4\ \Omega

We need to calculate the voltage

Using formula of voltage

V= IR

Put the value into the formula

V=0.17\times0.4

V=0.068\ V

Hence, The voltage across a semiconductor bar is 0.068 V.

6 0
3 years ago
I could really use some help on this question guys! Will give brainliest!
aev [14]

Answer:

I think it’s the third one

4 0
2 years ago
Read 2 more answers
Other questions:
  • Imagine a Carnot engine has a hot reservoir of 680 K and a cold reservoir of 220 K. What is the efficiency of the engine? 58.3%
    14·2 answers
  • If v lies in the first quadrant and makes an angle Ï/3 with the positive x-axis and |v| = 4, find v in component form.
    5·1 answer
  • You are instructed to remove the appendicular skeleton of a cadaver. To accomplish this goal, you would
    9·1 answer
  • A 2011 Porsche 911 Turbo S goes from 0-27 m/s in 2.7 seconds. What is the<br> car's acceleration?
    11·1 answer
  • Which statement explains how weight is different from mass?
    12·2 answers
  • How much work does an athlete do if she<br> raises a 5N kettle bell 2 m off the ground?
    7·1 answer
  • What are four main ways weathering can happen
    13·1 answer
  • The two ends of an iron rod are maintained at different temperatures. The amount of heat that flows through the rod by conductin
    13·1 answer
  • . Calculate the magnetic force on a current carrying conductor.
    14·1 answer
  • An object is moving on a horizontal frictionless surface. if the net force applied to the object in the direction of motion is d
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!