Answer:
9V
Explanation:
The potential difference across the terminal as the same and thats because we are assuming that the source has no internal resistance.
Internal resistance are usually little resistances in the supply.
Answer:
14.85 m/s
Explanation:
From the question given above, the following data were obtained:
Height (h) of tower = 45 m
Horizontal distance (s) moved by the balloon = 45 m
Horizontal velocity (u) =?
Next, we shall determine the time taken for the balloon to hit the shoe of the passerby. This is illustrated below:
Height (h) of tower = 45 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
45 = ½ × 9.8 × t²
45 = 4.8 × t²
Divide both side by 4.9
t² = 45/4.9
Take the square root of both side
t = √(45/4.9)
t = 3.03 s
Finally, we shall determine the magnitude of the horizontal velocity of the balloon as shown below:
Horizontal distance (s) moved by the balloon = 45 m
Time (t) = 3.03 s
Horizontal velocity (u) =?
s = ut
45 = u × 3.03
Divide both side by 3.03
u = 45/3.03
u = 14.85 m/s
Thus, the magnitude of the horizontal velocity of the balloon was 14.85 m/s
Answer:
D
Explanation:
<em>The correct answer would be in the axle of the wheels while you ride your bicycle.</em>
Options A, B, and C requires that the forces of friction is increased in order to have more control.
However, option D requires that there is a minimal frictional force in the axle of the wheels of a bicycle while riding so that a little effort would be required to keep the bicycle moving.
<u>The lesser the friction, the lower the effort that would be needed to keep the bicycle moving and vice versa.</u>
V: velocity of wave
f: frequency
L: wavelenght
v = fL => L = v/f => L = (3x10^8)/(900x10^3) => L = 3.33 x 10^2m
Answer:
1. Thermal Energy is the internal energy that is produced from the temperature of a heated substance/object.
2. From the potato to the soup and from the soup to the surrounding room
Explanation:
1. When an object or substance is heated it causes a rise in temperature which makes the atoms and molecules within the object move/vibrate faster and collide with each other. This kinetic energy energy comes from the temperature of the object being heated and is the thermal energy.
2. The atoms present in a hot object have higher kinetic energy when compared to a colder object and usually flow towards the colder object. This is why it is possible for the hot potato whose temperature is higher than the bowl of soup to flow towards the soup and from the soup to the surrounding room.