Well, one of the theories was that Charles darwin proved that theory evolution is real so that one theory.
Answer:
1) No, the car does not travel at constant speed.
2) V = 9 ft/s
3) No, the car does not travel at constant speed.
4) V = 5.9 ft/s
Explanation:
In order to know if the car is traveling at constant speed we need to derive the given formula. That way we get speed as a function of time:
V(t) = 2*t + 2 Since the speed depends on time, the speed is not constant at any time.
For the average speed we evaluate the formula for t=2 and t=5:
d(2) = 8 ft and d(5) = 35 ft

Again, for the average speed we evaluate the formula for t=1.8 and t=2.1:
d(1.8) = 6.84 ft and d(2.1) = 8.61 ft

Answer:
Pressure of the gas = 12669 (Pa) and height of the oil is 1,24 meters
Explanation:
First, we can use the following sketch for an easy understanding, in the attached image we can see the two pressure gauges the one with mercury to the right and the other one with oil to left. We have all the information needed in the mercury pressure gauge, so we can determine the pressure inside the vessel because the fluid is a gas it will have the same pressure distributed inside the vessel (P1).
Since P1 = Pgas, we can use the same formula, but this time we need to determine the height of the column of oil in the pressure gauge.
The result is that the height of the oil column is higher than the height of the one that uses mercury, this is due to the higher density of mercury compared to oil.
Note: the information given in the units of the fluids is not correct because the density is always expressed in units of (mass /volume)
You could do something about Einstein's theory of energy... it seems like it would be a simple and easy project. E=mc^2
Answer:
mass of block=2.7 gm
Explanation:
concept: Density=mass/volume
given:ρ=2700 kg/m^3 and v=250 cm^3 (in cm^3 not in m^3)
=> v= convert cm^3 to m^3
there fore= 1 cm^3=1 cm*1 cm*1 cm
i.e 1 cm^3=1/100*1/00*1/100 m^3 => 1 cm^3=1/1000000 m^3
ρ=m/v
=>mass=ρ*volume
=>mass=2700*1/10^-6
=>mass=2.7*10^-3 kg =>2.7 gm