As the scattering angle of the photon increases, the wavelength associated with the photon increases.
<h3><u>
Explanation:</u></h3>
The particle with quantum mechanical property is known as Compton wavelength. The wavelength of a photon increases during collision. When the scattering angle of the photon is 0 degree then the photon's wavelength increases by 0 and when the scattering angle is 180 degree then the wavelength of the photon will become double. This is known as Compton wavelength.
When a photon undergoes collision process, the photo loses its energy and this energy is transferred to the electrons. This causes energy of the photon to decrease and thus the frequency also decreases. Thus, the wavelength of the photon will increase.
I think it’s R=U/I = 120/5 = 24
Light waves are never 'aborted'.
They can be 'absorbed', and I think that's what you mean.
It's what happens when light hits something or goes into it,
and never comes out.
"Absorb" just means "soak up". When a light wave hits something and
gets soaked up in it, it's gone, and never comes out the other side.
The light wave certainly gets changed ... it no longer exists.
The object that absorbs it also gets changed. It soaks up the energy
in the light wave, and it has a little more internal energy (heat) than it
had before the light hit it.