Answer:
Label A: Battery, Label B: Light or Bulb, Label C: Switch
Explanation:
I got it right.
By definition, the law of conservation of energy states that:
Ei = Ef
Where,
Ei: initial energy
Ef: final energy
Therefore, no matter the type of energy, always the final energy is equal to the final energy.
Energy can be transformed into another type of energy. For example, the potential energy can be transformed into kinetic energy.
Also, energy is not created, nor destroyed.
Answer:
The following is not true about the Law of Conservation of Energy:
A. It states that the total energy in the universe keeps increasing.
Complete Question
A small metal sphere, carrying a net charge q1=−2μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q2= -8μC and mass 1.50g, is projected toward q1. When the two spheres are 0.80m apart, q2 is moving toward q1 with speed 20ms−1. Assume that the two spheres can be treated as point charges. You can ignore the force of gravity.The speed of q2 when the spheres are 0.400m apart is.
Answer:
The value 
Explanation:
From the question we are told that
The charge on the first sphere is 
The charge on the second sphere is 
The mass of the second charge is 
The distance apart is 
The speed of the second sphere is 
Generally the total energy possessed by when
and
are separated by
is mathematically represented

Here KE is the kinetic energy which is mathematically represented as

substituting value


And U is the potential energy which is mathematically represented as

substituting values


So


Generally the total energy possessed by when
and
are separated by
is mathematically represented

Here
is the kinetic energy which is mathematically represented as

substituting value


And
is the potential energy which is mathematically represented as

substituting values


From the law of energy conservation

So


Answer:

Explanation:
As we know that initial speed of the fall of the stone is ZERO

also the acceleration due to gravity on Mars is g
so we have

now we have

now if the same is dropped for 4t seconds of time
then again we will use above equation



Answer: T= 715 N
Explanation:
The only external force (neglecting gravity) acting on the swinging mass, is the centripetal force, which. in this case, is represented by the tension in the string, so we can say:
T = mv² / r
At the moment that the mass be released, it wil continue moving in a straight line at the same tangential speed that it had just an instant before, which is the same speed included in the centripetal force expression.
So the kinetic energy will be the following:
K = 1/2 m v² = 15. 0 J
Solving for v², and replacing in the expression for T:
T = 1.9 Kg (3.97)² m²/s² / 0.042 m = 715 N