1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luden [163]
3 years ago
15

Define not matter and give examples​

Chemistry
1 answer:
VLD [36.1K]3 years ago
3 0

Answer:

Everything that has mass and takes up space is matter. Every day, you encounter phenomena that either don't have mass or don't take up space. They are non-matter. Basically, any type of energy or any abstract concept is an example of something that is not matter.

An apple.

A person.

A table.

Air.

Water.

A computer.

Paper.

Iron.

hope this helped you

You might be interested in
What is produced at each electrode in the electrolysis of agf(aq)?
Rzqust [24]
AgF consists of Ag+ and F- ions, which are fully dissociated in aqueous solution. When solving electrolysis problems, it is important to remember that water itself may also be a subject to electrolysis. Therefore, determining which species is oxidized and which species is reduced depends on selecting the processes that are the most energetically favorable. The most preferred reduction reaction will be  Ag+ + e- = Ag (Emf=0.7996 V) which will occur at the cathode, on the other hand, the most favorable oxidation reaction will be
2H2O = O2 +4H+ + 4e- (Emf = -1.3 V) that will occur at the anode. Thus, the product at the anode is oxygen gas and at the cathode electrode is silver metal.
8 0
3 years ago
What are the 6 things needed on a graph?
Furkat [3]
1. Always give your graph a title in the following form: "The dependence of (your dependent variable) on (your independent variable). <span><span>Let's say that you're doing a graph where you're studying the effect of temperature on the speed of a reaction. In this reaction, you're changing the temperature to known values, so the temperature is your independent variable. Because you don't know the speed of the reaction and speed depends on the temperature, the speed of the reaction is your dependent variable. As a result, the title of your graph will be "The dependence of reaction rate on temperature", or something like that.</span> 

 </span>2. The x-axis of a graph is always your independent variable and the y-axis is the dependent variable.<span>For the graph described above, temperature would be on the x-axis (the one on the bottom of the graph), and the reaction rate would be on the y-axis (the one on the side of the graph) 

 </span>3. Always label the x and y axes and give units.<span>Putting numbers on the x and y-axes is something that everybody always remembers to do (after all, how could you graph without showing the numbers?). However, people frequently forget to put a label on the axis that describes what those numbers are, and even more frequently forget to say what those units are. For example, if you're going to do a chart which uses temperature as the independent variable, you should write the word "temperature (degrees Celsius)" on that axis so people know what those numbers stand for. Otherwise, people won't know that you're talking about temperature, and even if they do, they might think you're talking about degrees Fahrenheit. 
 
</span>4. Always make a line graph<span><span>Never, ever make a bar graph when doing science stuff. Bar graphs are good for subjects where you're trying to break down a topic (such as gross national product) into it's parts. When you're doing graphs in science, line graphs are way more handy, because they tell you how one thing changes under the influence of some other variable. </span> 
 
</span><span>5. Never, EVER, connect the dots on your graph!Hey, if you're working with your little sister on one of those placemats at Denny's, you can connect the dots. When you're working in science, you never, ever connect the dots on a graph.Why? When you do an experiment, you always screw something up. Yeah, you. It's probably not a big mistake, and is frequently not something you have a lot of control over. However, when you do an experiment, many little things go wrong, and these little things add up. As a result, experimental data never makes a nice straight line. Instead, it makes a bunch of dots which kind of wiggle around a graph. This is normal, and will not affect your grade unless your teacher is a Nobel prize winner. However, you can't just pretend that your data is perfect, because it's not. Whenever you have the dots moving around a lot, we say that the data is noisy, because the thing you're looking for has a little bit of interference caused by normal experimental error.</span><span>To show that you're a clever young scientist, your best bet is to show that you KNOW your data is sometimes lousy. You do this by making a line (or curve) which seems to follow the data as well as possible, without actually connecting the dots. Doing this shows the trend that the data suggests, without depending too much on the noise. As long as your line (or curve) does a pretty good job of following the data, you should be A-OK. 

 </span>6. Make sure your data is graphed as large as possible in the space you've been given.<span><span>Let's face it, you don't like looking at little tiny graphs. Your teacher doesn't either. If you make large graphs, you'll find it's easier to see what you're doing, and your teacher will be lots happier.</span> 
 </span><span>So, those are the steps you need to follow if you're going to make a good graph in your chemistry class. I've included a couple of examples of good and bad graphs below so you know what these things are supposed to look like.</span>
5 0
3 years ago
Read 2 more answers
A solution contains 0.10 m sodium cyanide and 0.10 m potassium hydroxide. solid zinc acetate is added slowly to this mixture. wh
Brrunno [24]
1) Zn(CH₃COO)₂(s) + 2KOH(aq) = Zn(OH)₂(s) + 2CH₃COOK(aq)

Ksp{Zn(OH)₂}=1.2*10⁻¹⁷

2) Zn(CH₃COO)₂(s) + 2NaCN(aq) = Zn(CN)₂(s) + 2CH₃COONa(aq)

Ksp{Zn(CN)₂}=2.6*10⁻¹³


Ksp{Zn(OH)₂}<Ksp{Zn(CN)₂}

Zn(OH)₂ precipitates first

6 0
3 years ago
How many molecules in 4NH3
Snezhnost [94]

Answer:

16

Explanation:

4 nitrogen (N) atoms and 12 (3×4) atoms in Hydrogen (H)

Total = 4 + 12 = 16 molecules

8 0
3 years ago
Knowing the gravity on the moon is 1.6m/s what is your weight?
wariber [46]
Weight varies dramatically if we leave earths surface.On the moon for example acceleration due to gravity is only 1.67m/s2 A 1.0-kg mass thus has a weight of 9.8 N on Earth and only about 1.7 N on the moon
3 0
3 years ago
Other questions:
  • A girl throws a rock into a pond. A leaf floating on the pond bobs up and down but does not change location on the pond's surfac
    14·1 answer
  • You have prepared a saturated solution of x at 20∘c using 39.0 g of water. how much more solute can be dissolved if the temperat
    7·1 answer
  • In a sedimentary rock, small rounded particles indicate a A) long distance and long travel time. B) long distance and short trav
    11·1 answer
  • Single-crystal sapphire has a melting point of aorund 2323K what is the melting point in degrees Celsius?
    14·1 answer
  • The atomic mass of carbon-13 is 13. It has six protons. How many neutrons does this isotope have?
    15·2 answers
  • Describe the relationship between an enzyme, substrate, and active site.
    15·1 answer
  • Please help me ASAP I’ll mark Brainly
    11·1 answer
  • Select whether the statement is for Speed, Velocity, or Acceleration.
    9·1 answer
  • How many moles of gas are in a 30 liter compressed air tank if the
    15·2 answers
  • How many molecules are in 41.8 g H2O?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!