Answer:
The average thickness of the blubber is<u> 0.077 m</u>
Explanation:
Here, we want to calculate the average thickness of the Walrus blubber.
We employ a mathematical formula to calculate this;
The rate of heat transfer(H) through the Walrus blubber = dQ/dT = KA(T2-T1)/L
Where dQ is the change in amount of heat transferred
dT is the temperature gradient(change in temperature) i.e T2-T1
dQ/dT = 220 W
K is the conductivity of fatty tissue without blood = 0.20 (J/s · m · °C)
A is the surface area which is 2.23 m^2
T2 = 37.0 °C
T1 = -1.0 °C
L is ?
We can rewrite the equation in terms of L as follows;
L × dQ/dT = KA(T2-T1)
L = KA(T2-T1) ÷ dQ/dT
Imputing the values listed above;
L = (0.2 * 2.23)(37-(-1))/220
L = (0.2 * 2.23 * 38)/220 = 16.948/220 = 0.077 m
Find the solution in the attachments
Note: Question was incomplete, so the complete question is added in the attachments.
Answer
Statically determinate beams are those beams in which the unknown reaction forces are equal or less than the equilibrium equation.
As shown in figure 1 in which reaction forces are 3 and we have 3 equilibrium equation so beam is determinate.
Statically indeterminate beams are those beams in which unknown reaction force are more than the equilibrium equation.
As shown in figure 2 in which reaction forces are 6 and we have 3 equilibrium equation so beam is indeterminate.
In general, bury metal conduits at least 6 inches below the soil surface. You may also run them at a depth of 4 inches under a 4-inch concrete slab. Under your driveway, the conduits must be below a depth of 18 inches, and under a public road or alleyway, they must be buried below 24 inches.
Answer:
for a) F= 744.97 N
for a) F= 167.85 N
for a) F= 764.57 N
Explanation:
the pressure developed by the piston should be higher than the saturated vapor pressure of water for boiling point at T=120 to ensure boiling.
Then from steam tables
T= 120°C → P required=Pr= 198.67 kPa
then the pressure developed by the piston is
P = (m*g + F)/A
where m= mass of the piston ,g= gravity F= force required and A= area of the piston
then
Pr = P = (m*g + F)/A
F = Pr*A-m*g
since A= π/4*D²
F =π/4* Pr*D²-m*g
replacing values
F =π/4* Pr*D²-m*g = π/4*198.67 *10³Pa*(0.07m)² -2kg* 9.8m/s²
F= 744.97 N
b) for T₂=80°C → Pr₂=47.41 kPa
F₂ =π/4* Pr₂*D²-m*g = π/4*47.41*10³Pa*(0.07m)² -2kg* 9.8m/s²
F₂= 167.85 N
c) for m=0 (mass of the piston neglected) ,the force required is
F₃ =π/4*Pr*D² = π/4*198.67 *10³Pa*(0.07m)²= 764.57 N
F₃ =764.57 N