<span>c. A jar of pond water with a lid on it (: hope this helps!</span>
I found this....
Supraglacial Moraine
A supraglacial moraine is material on the surface of a glacier. Lateral and medial moraines can be supraglacial moraines. Supraglacial moraines are made up of rocks and earth that have fallen on the glacier from the surrounding landscape. Dust and dirt left by wind and rain become part of supraglacial moraines. Sometimes the supraglacial moraine is so heavy, it blocks the view of the ice river underneath.
If a glacier melts, supraglacial moraine is evenly distributed across a valley.
Ground Moraine
Ground moraines often show up as rolling, strangely shaped land covered in grass or other vegetation. They don’t have the sharp ridges of other moraines. A ground moraine is made of sediment that slowly builds up directly underneath a glacier by tiny streams, or as the result of a glacier meeting hills and valleys in the natural landscape. When a glacier melts, the ground moraine underneath is exposed.
Ground moraines are the most common type of moraine and can be found on every continent.
Terminal Moraine
A terminal moraine is also sometimes called an end moraine. It forms at the very end of a glacier, telling scientists today important information about the glacier and how it moved. At a terminal moraine, all the debris that was scooped up and pushed to the front of the glacier is deposited as a large clump of rocks, soil, and sediment.
Scientists study terminal moraines to see where the glacier flowed and how quickly it moved. Different rocks and minerals are located in specific places in the glacier’s path. If a mineral that is unique to one part of a landscape is present in a terminal moraine, geologists know the glacier must have flowed through that area.
Answer:
1.26 M
Explanation:
The ion nitrate is NO₃⁻ and the Barium is from group 2 so it forms the ion Ba²⁺, so the barium nitrate has the formula: Ba(NO₃)₂. The molar masses are: Ba: 137 g/mol, N = 14 g/mol, O = 16 g/mol, so the molar mass of barium nitrate is:
137 + 2x(14 + 3x16) = 199 g/mol
The number of moles is the mass divided by the molar mass, so:
n = 25.1/199 = 0.126 mol of Ba(NO₃)₂
In 1 mol of the salt, there are 2 moles of NO₃⁻, so the number of moles of nitrate is 0.252 mol. Nitrates formed with ammonium (that can react when the solid dissolves) and with elements from group 1 and 2 are completely soluble in water. So, the moles of nitrate will remain 0.252 mol.
The molarity is the number of moles divided by the volume (0.2 L):
[NO₃⁻]= 0.252/0.2 = 1.26 M
Light bulbs works by converting electricity into light by using electric currents. it emits electromagnetic radiation