1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ainat [17]
2 years ago
15

A seagull flies at a velocity of 9.00 m/s straight into the wind.

Physics
1 answer:
RideAnS [48]2 years ago
4 0

a)If it takes the bird 18.0 minutes to fly 6 km away from the earth, the wind's speed will be 4 m/s.

b) The bird would need 7 minutes and 42 seconds to fly back 6 kilometers if he turned around and flew with the wind.

c)Compared to the 133.33 seconds it would take without the wind, the overall round-trip time is affected by the wind.

<h3>What is velocity?</h3>

The change of distance with respect to time is defined as speed. Speed is a scalar quantity. It is a time-based component. Its unit is m/sec.

The given data in the problem is

A seagull flies at a velocity,\rm v_{SA}  = 9 \ m/sec

The time the bird takes,t=18.0 min

The distance traveled relative to the earth = 6.00 km

a)

The seagull's relative velocity with reference to the ground as;

\rm v_{sg} = \frac{6.00 \times 10^3 \ m }{(20 min) \times \frac{60 s }{1 \ min}} \\\\ v_{sg}= 5.00 \ m/sec

Air velocity with reference to the ground is;

\rm v_{AG}= v_{SG}-v_{SA} \\\\ v_{AG} = 5.00 \ m/sec - 9.00 \ m/sec \\\\ v_{AG} = -4.00 \ m/sec

b)

If the bird turns around and flies with the wind, The time will he take to return 6.00 km is;

\rm v_{SG}=v_{SA}+v_{AG} \\\\ v_{SG}=-900 \ m/sec +(-4.00 \ m/sec) \\\\ v_{SG}= -13.00 \ m/sec

The time the bird takes;

\rm t = \frac{x_{SG}}{v_{SG}} \\\\ t = \frac{6.00 \times 10^3 \ m }{13.00 \ m/sec } \\\\ t = 462 m/sec \\\\ t = 7  \ min \  and  \ 42  \ sec

c)\

The total round-trip time compared to what it would be with no wind. is;

\rm  t = 20 \ min( \frac{60 \ sec }{1 \ min} )+ 462 \ sec \\\\ t = 1200 \ sec +6 462 \ ec \\\\ t= 1662 \ sec

The time for the round trip is;

\rm  t = \frac{12 \times 10^ 3 }{ 9 \ m/sec }  \\\\ t  = 1333.33 \ sec

Hence the wind's speed, the time bird would need to fly back the total round-trip time will be  4 m/s, 7 minutes and 42 seconds and 1333.33 sec.

To learn more about the velocity, refer to the link: brainly.com/question/862972.

#SPJ1

You might be interested in
La velocidad de la luz en el vacío es c= 3000.000 km\s la luz del sol tarda en llegar a la tierra 8 minutos y 14 segundos
ehidna [41]

La velocidad correcta de la luz en el vacío es  300.000 km/s .

La distancia = (velocidad) x (duración de tiempo)

Duración de tiempo = 494 segundos, porque cada minuto = 60 segundos

La distancia = (300.000 km/s) x (494 s)

<em>La distancia = 148.200.000 km</em>

3 0
3 years ago
To apply Problem-Solving Strategy 12.2 Sound intensity. You are trying to overhear a most interesting conversation, but from you
Ivenika [448]

Answer:

r₂ = 0.316 m

Explanation:

The sound level is expressed in decibels, therefore let's find the intensity for the new location

            β = 10 log \frac{I}{I_o}

let's write this expression for our case

           β₁ = 10 log \frac{I_1}{I_o}

           β₂ = 10 log \frac{I_2}{I_o}

           

          β₂ -β₁ = 10 ( log \frac{I_2}{I_o} - log \frac{I_1}{I_o})

          β₂ - β₁ = 10 log \frac{I_2}{I_1}

          log \frac{I_2}{I_1} = \frac{60 - 20}{10} = 3

           \frac{I_2}{I_1} = 10³

           I₂ = 10³ I₁

having the relationship between the intensities, we can use the definition of intensity which is the power per unit area

           I = P / A

           P = I A

the area is of a sphere

          A = 4π r²

           

the power of the sound does not change, so we can write it for the two points

          P =  I₁ A₁ =  I₂ A₂

          I₁ r₁² = I₂ r₂²

we substitute the ratio of intensities

          I₁ r₁² = (10³ I₁ ) r₂²

         r₁² = 10³ r₂²

         

         r₂ = r₁ / √10³

         

we calculate

          r₂ = \frac{10.0}{\sqrt{10^3} }

          r₂ = 0.316 m

8 0
3 years ago
When there is a change of state, such as a solid to liquid or liquid to gas, heat energy can be added without a temperature chan
Romashka-Z-Leto [24]
I’m pretty sure the answer is C. Any change of state or movement requires energy
3 0
3 years ago
If gravity on the earth increased, what affect would it have on the moon
Rufina [12.5K]

Answer:

If gravity on Earth is increased, this gravitational tugging would have influenced the moon's rotation rate. If it was spinning more than once per orbit, Earth would pull at a slight angle against the moon's direction of rotation, slowing its spin. If the moon was spinning less than once per orbit, Earth would have pulled the other way, speeding its rotation.

6 0
3 years ago
Ana kicks a stationary 0.2kg soccer ball. The ball leaves her foot at a speed of 20 m/s.
elena55 [62]

Answer:a. 24 kg m/s

b.  3/5s

Explanation:

a.impulse is the change in momentum so at first the momentum is zero because the ball was at rest and the final momentum is 1.2kg*20m/s=24 kg m/s

so the impulse would be (24-0) kg m/s=24 kg m/s

b. so the impulse equation is impulse is force *delts time

so 24 kg m/s=40N*t

t=24 kg m/s /40N=3/5 s

6 0
3 years ago
Other questions:
  • A thief is trying to escape from a parking garage after completing a robbery, and the thief's car is speeding (v = 13 m/s) towar
    13·1 answer
  • Discuss the relationship between electric and magnetic fields
    14·1 answer
  • How long would it take you too run the 100m sprint if from rest you accelerate at 2m/s/s for the whole race?
    10·1 answer
  • What is the central core of hair
    9·2 answers
  • If someone is driving 100 miles in 60 minutes then drives 150 miles in 100 minutes west, what is his acceleration rate.
    6·1 answer
  • What use do we have for motion diagrams?
    6·1 answer
  • g f, as a pioneer, you wished to warm your room by taking an object heated on top of a stove into it, which of the following 15
    13·1 answer
  • A handbag weighing 162 N is carried by two students each holding the handle of the bag
    14·1 answer
  • A 10248 kg car is pulled by a low tow truck that has an acceleration of 2.0m/s what is the net force on the car
    15·1 answer
  • A car with a mass of 1500 kg is pulled by a rope that is horizontal to the ground. The tension in the rope is 2000 N and a frict
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!