Work is defined as the force times the distance which is mathematically expressed W = Fxd. The given force is 5x10^4 and the distance is 10000 m (the distance is converted as meter because Nm = J) the work done by the wind is W = 5x10^4 N (10000) = 500 x 10^6 Joules. I hope it answered your question
Explanation:
speed of an object is the magnitude of the rate of change of its position with time or the magnitude of the change of its position per unit of time; it is thus a scalar quantity.
Answer: it would be A
Explanation: how are we to measure the air of a square mile
Answer:
<h2> r=mv/Be</h2>
Explanation:
If a positive charge enters a magnetic field at 90 degrees the charge is deflected in a circular path by a force that acts perpendicular to it in line with Flemings right-hand rule
to derive the radius of the path of the charge we apply
F= mv^2/r=Bev
where
m= mass of the electronic charge
e=charge
B=magnetic field
v=average speed
r=radius
rearranging we have
r=mv^2/Bev
r=mv/Be
Answer:
= 3,126 m / s
Explanation:
In a crash exercise the moment is conserved, for this a system formed by all the bodies before and after the crash is defined, so that the forces involved have been internalized.
the car has a mass of m = 1.50 kg a speed of v1 = 4.758 m / s and the mass of the train is M = 3.60 kg and its speed v2 = 2.45 m / s
Before the crash
p₀ = m v₁₀ + M v₂₀
After the inelastic shock
= m
+ M
p₀ = 
m v₀ + M v₂₀ = m
+ M
We cleared the end of the train
M
= m (v₁₀ - v1f) + M v₂₀
Let's calculate
3.60 v2f = 1.50 (2.15-4.75) + 3.60 2.45
= (-3.9 + 8.82) /3.60
= 1.36 m / s
As we can see, this speed is lower than the speed of the car, so the two bodies are joined
set speed must be
m v₁₀ + M v₂₀ = (m + M)
= (m v₁₀ + M v₂₀) / (m + M)
= (1.50 4.75 + 3.60 2.45) /(1.50 + 3.60)
= 3,126 m / s