The answer is 615.91 grams of <span>n2f4
Solution:
225g F2 x [(1molF2)/(38gramsF2)] x [</span>(1molF2)/(1molN2F4)] x [(104.02 grams N2F4)/(1molN2F4)]
=615.91 grams
Limitations of Van der waal's equation. (i) The value of 'b' is not constant but varies with pressure and temperature. (ii) The value of is not equal to 3b, but actually it is equal to, in some case; and in other cases 2b. (iii) The value of is not equal to but it is usually more than 3 for most of the gases.
Answer:
The correct answer to this problem is B. 7.0 X 10^-8 meters
Explanation:
To solve this problem, we have to use the following equation:
c = λν, or speed of light = wavelength*frequency
If we substitute in the values we are given by the problem, we get:
3.00 * 10^8 m/s = (4.3 * 10^15 Hz)*(wavelength)
wavelength = 6.98 * 10^-8 m
Since the given value has 2 significant figures, our answer should similarly include two significant figures since the operation in the problem was multiplication.
Therefore, the answer is B. 7.0 X 10^-8 meters.
Hope this helps!
Answer:
Because they are normally dissolved in water
Explanation:
The phospholipids can act as molecules that are carry inside or outside the cells, to transport it they are dissolved in another hydrophilic media, in this way the hydrophilic part can be in the outside part of the group of moleucles stick together like in cell membranes that are conformed by a double lipidic layer, in which the hydrophobic part it in the inside part. The cells normally are surrounded by different water solutions as the blood or another solutions.