The total angular momentum of the system about point B is 
Angular momentum, also known as moment of momentum or rotational momentum, is the rotating counterpart of linear momentum.
A rigid object's angular momentum is defined as the product of its moment of inertia and its angular velocity. If there is no external torque on the object, it is analogous to linear momentum and is subject to the fundamental constraints of the conservation of angular momentum principle. The vector quantity angular momentum It is derived from the expression for a particle's angular momentum.
Given,
mass of ball 1 = m1
m₂ mass of ball 2=m2
v₁ is the velocity of ball=r₁ω₁
v₂ is the velocity of ball 2=r₂ω₂
The total angular momentum is given as;

Hence the total angular momentum will be 
To learn more about angular momentum refer here
brainly.com/question/29512279
#SPJ4
Answer:

Explanation:
The period of a simple pendulum is given by:

where
L is the length of the pendulum
g is the acceleration of gravity
From this equation we can write

Taking the square of this equation, we get:

So we see that
is proportional to L and inversely proportional to g. So, we can write:

So the only correct option is

Answer:
bonds between 2 alike atoms or most non-metals get a covalent bond when reacting to the ... It tells what kinds of atomas are in a compound and how many.
Hope this helped
-Gavin
<u>Answers</u>
(a) 6.75 Joules.
(b) 5.27 m/s
(c) 0.75 Joules
<u>Explanation</u>
Kinetic energy is the energy possessed by a body in motion.
(a) its kinetic energy at A?
K.E = 1/2 mv²
= 1/2 × 0.54 × 5²
= 6.75 Joules.
(b) its speed at point B?
K.E = 1/2 mv²
7.5 = 1/2 × 0.54 × V²
V² = 7.5 ÷ 0.27
= 27.77778
V = √27.77778
= 5.27 m/s
(c) the total work done on the particle as it moves from A to B?
Work done = 7.5 - 6.75
= 0.75 Joules
Answer:
Because as the waves propagates, the particles of the medium (molecules of water) vibrates perpendicularly (upward and downward) about their mean position and not in the direction of the waves.
Explanation:
A wave is a phenomena which causes a disturbance in a medium without any permanent deformation to the medium. Examples are; transverse wave and longitudinal wave. Waves transfer energy from one point in the medium to another.
The waves generated by water are transverse waves. Which are waves in which the vibrations of the particles of the medium is perpendicular to the direction of propagation of the waves.
Thus as the waves propagates, the molecules of water vibrates up and down and not along the direction of propagation of the waves. So that the floating objects do not get pushed in the direction of the waves every time.