<h3>
Answer:</h3>
Ag⁺(aq) +Cl⁻(aq) → AgCl(s)
<h3>
Explanation:</h3>
The questions requires we write the net ionic equation for the reaction between aqueous potassium chloride and aqueous silver nitrate.
<h3>Step 1: Writing a balanced equation for the reaction.</h3>
- The balanced equation for the reaction between aqueous potassium chloride and aqueous silver nitrate will be given by;
KCl(aq) + AgNO₃(aq) → KNO₃(aq) +AgCl(s)
- AgCl is the precipitate formed by the reaction.
<h3>Step 2: Write the complete ionic equation.</h3>
- The complete ionic equation for the reaction is given by showing all the ions involved in the reaction.
K⁺(aq)Cl⁻(aq) + Ag⁺(aq)NO₃⁻(aq) → K⁺(aq)NO₃⁻(aq) +AgCl(s)
- Only ionic compounds are split into ions.
<h3>Step 3: Write the net ionic equation for the reaction.</h3>
- The net ionic equation for a reactions only the ions that fully participated in the reaction and omits the ions that did not participate in the reaction.
- The ions that are not involved directly in the reaction are known as spectator ions and are not included while writing net ionic equation.
Ag⁺(aq) +Cl⁻(aq) → AgCl(s)
I don't think that the whole question is posted here, but if you are looking for a way to balance this equation, I may have the answer. I believe the balanced equation is C5H8+9O2=4H2O+5CO2. If you need the reaction type, the answer is combustion. Hope this helps you.
B.
The cynobacteria were already there without the oxygen, so that rules out A, and a lot of prokaryotes were anaerobic, so that rules out C. Finally, Photosynthesis does not require oxygen. Instead, Oxygen is a waste product of it. Therefore, it cannot be D. So, we are only left with B
Hoped this helped :D