Answer:
5.5 atm
Explanation:
Step 1: Calculate the moles in 2.0 L of oxygen at STP
At STP, 1 mole of an ideal gas occupies 22.4 L.
2.0 L × 1 mol/22.4 L = 0.089 mol
Step 2: Calculate the moles in 8.0 L of nitrogen at STP
At STP, 1 mole of an ideal gas occupies 22.4 L.
8.0 L × 1 mol/22.4 L = 0.36 mol
Step 3: Calculate the total number of moles of the mixture
n = 0.089 mol + 0.36 mol = 0.45 mol
Step 4: Calculate the pressure exerted by the mixture
We will use the ideal gas equation.
P × V = n × R × T
P = n × R × T / V
P = 0.45 mol × (0.0821 atm.L/mol.K) × 298 K / 2.0 L = 5.5 atm
Atomic Number is the same as the number of protons in an element.
Mass Number is the number of Protons + Neutrons in an element.
Atomic Number: 6 means 6 Protons
Mass Number: 15 means 15 atoms that are a proton/neutron.
We are given out of the 15 atoms, 6 of them are protons, so the other 9 must be Neutrons.
15 - 6 = 9 so there must be 9 Neutrons.
There are 9 Neutrons in atom's nucleus.
Give Brainiest if you think this is the best answer and explanation. Thanks!
The correct answer is the fourth option. The complete dissociation of a strong base is BOH + h20 -> B+ + OH- + H20 since this is the only base from the choices given. A base is a substance that accepts hydrogen ions.
It is called permafrost :)