Answer: Bohr postulated that electronic energy levels are quantized. Secondly, a photon of light of a particular frequency is emitted when electrons move from a higher to a lower energy levels.
Explanation:
The Bohr model of the atom is the immediate predecessor of the wave mechanical model of the atom. The wave mechanical model refined the Bohr's model by treating the electron as a wave having a wave function psi. The wave function describes the identity of the electron. From Heisenberg uncertainty principle, the position of a particle cannot be accurately and precisely measured. Hence the wave mechanical model added that electrons are not localized in orbits according to Bohr's model but the integral of psi squared dx gives the probability of finding the electron within a given space.
<span> First you need to know how many isotopes there are of silicon, and its average atomic units (look at periodic table). Then make up a system of equations to solve for it. Theres 3 stable silicon isotopes (28, 29, 30) so you will need to have 3 equations. You must be given the percent abundance of at least one of the isotopes to solve because here I can only see 2 equations (numbered down below) set x = percent abundance of si-28 y = percent abundance of si-29 z = percent abundance of si-30 since all of silicon atoms account for 100% of all silicon: x + y + z = 100% = 1 therefore: 1) x = 1 - y - z You also have 2) 28x + 29y + 30z = average atomic mass you can substitute x so that equation becomes: 28 (1 - y - z) + 29y + 30z = average atomic mass See how you have 2 variables here? You cant go on until you know the value of one isotope already or you have given a clue which you can derive the third equation</span>
Answer:
endothermic change occurs
Explanation:
photosynthesis, is an endothermic reaction in which energy is absorbed from the surrounding.
hope this helps