Answer:
27 blocks
Explanation:
First, the expression to use here is the following:
P = F/A
Where:
P: pressure
F: Force exerted
A: Area of the block.
Now , we need to know the number of blocks needed to exert a pressure that equals at least 2 atm. To know this, we should rewrite the equation. We know that certain number of blocks, with the same weight and dimensions are putting one after one over the first block, so we can say that:
P = W/A
P = n * W1 / A
n would be the number of blocks, and W1 the weight of the block.We have all the data, and we need to calculate the area of the block which is:
A = 0.2 * 0.1 = 0.02 m²
Solving now for n:
n = P * A / W1
The pressure has to be expressed in N/m²
P = 2 atm * 1.01x10^5 N/m² atm = 2.02x10^5 N/m²
Finally, replacing all data we have:
n = 2.02x10^5 * 0.02 / 150
n = 26.93
We can round this result to 27. So the minimum number of blocks is 27.
Answer: The wave is traveling in the - x direction.
Explanation: The parameter in a wave function determines the direction of the wave is "ωt"
Where ω = angular frequency(in hertz ) and t = time taken (in seconds)
The product of ωt = 2π which is angular displacement in radian.
A negative value of the of ωt means the wave is traveling in the negative direction.
Also a positive value of sin ωt means the wave is traveling in the positive direction
Answer:
The forms of energy involved are
1. Kinetic energy
2. Potential energy
Explanation:
The system consists of a ball initially at rest. The ball is pulled down from its equilibrium position (this builds up its potential energy) and then released. The released ball oscillates due to a continuous transition between kinetic and potential energy.
The answer is 40 because you just have to do 200 divided by 5