Answer:
22.26 years
, 15.585 light years , 11.13 light years
Explanation:
a)

= 
= 22.26 years
b)
0.7*c*22.26 years
=15.585 light years
c)
0.7*c*15.9
=11.13 light years
Answer:
32cm³
Explanation:
Given parameters:
Density of substance = 2.7g/cm³
Mass of substance = 86.4g
Unknown:
Volume of substance = ?
Solution:
Density is the mass per unit volume of a substance.
Density = 
Since the unknown is volume we solve for it;
mass = density x volume
86.4 = 2.7 x volume
volume =
= 32cm³
Answer:
y^16
Explanation:
who need to add the exponents only
7 + 9 = 16
therefore, the answer is y^16
The mass of a particle is 2.2x10⁻¹⁵ kg
Consider smoke particles as an ideal gas
The translational RMS speed of the smoke particles is 2.45x10⁻³ m/s.
<em>v= √3kT/m</em>
<em>where k= 1.38x10⁻²³J/K, T is 288K, and m is the mass of the smoke particle</em>
<em>2.45x10⁻³ = √3x1.38x10⁻²³x288/m</em>
<em>m= 2.2x10⁻¹⁵ kg</em>
Therefore, the mass of a particle is 2.2x10⁻¹⁵ kg.
To learn more about the translational root mean square speed of gases, visit brainly.com/question/6853705
#SPJ4
Answer:
27 blocks
Explanation:
First, the expression to use here is the following:
P = F/A
Where:
P: pressure
F: Force exerted
A: Area of the block.
Now , we need to know the number of blocks needed to exert a pressure that equals at least 2 atm. To know this, we should rewrite the equation. We know that certain number of blocks, with the same weight and dimensions are putting one after one over the first block, so we can say that:
P = W/A
P = n * W1 / A
n would be the number of blocks, and W1 the weight of the block.We have all the data, and we need to calculate the area of the block which is:
A = 0.2 * 0.1 = 0.02 m²
Solving now for n:
n = P * A / W1
The pressure has to be expressed in N/m²
P = 2 atm * 1.01x10^5 N/m² atm = 2.02x10^5 N/m²
Finally, replacing all data we have:
n = 2.02x10^5 * 0.02 / 150
n = 26.93
We can round this result to 27. So the minimum number of blocks is 27.