Answer:
Mechanical resonance frequency is the frequency of a system to react sharply when the frequency of oscillation is equal to its resonant frequency (natural frequency).
The physical dimension of the silicon is 10kg
Explanation:
Using the formular, Force, F = 1/2π√k/m
At resonance, spring constant, k = mw² ( where w = 2πf), when spring constant, k = centripetal force ( F = mw²r).
Hence, F = 1/2π√mw²/m = f ( f = frequency)
∴ f = F = mg, taking g = 9.8 m/s²
100 Hz = 9.8 m/s² X m
m = 100/9.8 = 10.2kg
Answer:
the pressure gradient in the x direction = -15.48Pa/m
Explanation:
- The concept of partial differentiation was used in the determination of the expression for u and v.
- each is partially differentiated with respect to x and the appropriate substitution was done to get the value of the pressure gradient as shown in the attached file.
Answer:
It has poor tensile strength despite having high compressive strength
Explanation:
Concrete exhibits high compressive strength when used. However, it has very low compressive strength. This is the reason why concrete is normally combined with steel to make a composite building material called reinforced concrete. The steel reinforces concrete hence increasing the tensile strength in RC buildings. The end composite is durable and fireproof. Generally, the main reason why concrete is not use on its own is due to its poor tensile strength.
Answer:
Go to explaination for the details of the answer.
Explanation:
In order to determine the lifetime (75 years) chronic daily exposure for each individual, we have to first state the terms of our equation:
CDI = Chronic Daily Intake
C= Chemical concentration
CR= Contact Rate
EFD= Exposure Frequency and Distribution
BW= Body Weight
AT = Average Time.
Having names our variables lets create the equations that will be used to derive our answers.
Please kindly check attachment for details of the answer.
Answer:
3A
Explanation:
Using Ohms law U=I×R solve for I by I=U/R