Answer:
(a) 11.8692 ohm
(b) 12.447 A
(c) 17.6 A
Explanation:
a) inductive reactance Z = L Ω
= L x 2π x F
= 45.0 x 10⁻³ x 2(3.14) x 42
= 11.8692 ohm
b) rms current
= 100 / 8.034
= 12.447 A
c) maximum current in the circuit
= I eff x rac2
= 12.447 x 1.414
= 17.6 A
Answer:
In water, the particles are much closer together, and they can quickly transmit vibration energy from one particle to the next.
A water wave is an example of a transverse wave. As water particles move up and down, the water wave itself appears to move to the right or left.
Answer:
1.991 × 10^(8) N/m²
Explanation:
We are told that its volume increases by 9.05%.
Thus; (ΔV/V_o) = 9.05% = 0.0905
To find the force per unit area which is also pressure, we will use bulk modulus formula;
B = Δp(V_o/ΔV)
Making Δp the subject gives;
Δp = B(ΔV/V_o)
Now, B is bulk modulus of water with a value of 2.2 × 10^(9) N/m²
Thus;
Δp = 2.2 × 10^(9)[0.0905]
Δp = 1.991 × 10^(8) N/m²
time=distance/speed
1.6/100 secs = 0.016secs=16millisecs
The chaotic nature of the Solar System excluding Pluto was established by the numerical computation of the maximum Lyapunov exponent of its secular system over 200 myr.
<h3>What is chaotic motion of the solar system ?</h3>
There has been an increase in awareness of chaotic dynamics in the solar system over the past 20 years. The orbits of tiny objects in the solar system, such as asteroids, comets, and interplanetary dust, are now known to be chaotic and to experience significant variations across geological time periods.
- a completely unpredictable orbit, or one where significant changes in the orbit can result from even small changes in the position and/or velocity of the orbiting entity.
Learn more about Chaotic motion here:
brainly.com/question/13717859
#SPJ4