Answer is
9.773m/s^2
-----------------------------------------------------------------------------
Given,
h=8848m
The value of sea level is 9.08m/s^2. So, Let g′ be the acceleration due to the gravity on Mount Everest.
g′=g(1 − 2h/h)
=9.8(1 - 6400000/17696)
=9.8(1 − 0.00276)
9.8×0.99724
=9.773m/s^2
Thus, the acceleration due to gravity on the top of Mount Everest is =9.773m/s^2
-----------------------------------------------------------------------
hope this helps :)
Answer:
Entropy is increasing. Entropy is decreasing.
Explanation:
The Entropy doesn't change.
1.
m = mass of Mr. Ure = 65 kg
g = acceleration due to gravity = 9.8 m/s²
force of earth's gravity on Mr. Ure is given as
F = mg
F = 65 x 9.8
F = 637 N
2.
F = force of gravity on car = 3050 N
m = mass of the car = ?
g = acceleration due to gravity = 9.8 m/s²
force of gravity on car is given as
F = mg
3050 = m (9.8)
m = 3050/9.8
m = 311.22 kg
3.
m = mass of Mr. Rees = 90 kg
g = acceleration due to gravity = 9.8 m/s²
force of earth's gravity on Mr. Rees is given as
F = mg
F = 90 x 9.8
F = 882 N
Explanation:
It is given that,
Mass of Millersburg Ferry, m = 13000 kg
Velocity, v = 11 m/s
Applied force, F = 10⁶ N
Time period, t = 20 seconds
(a) Impulse is given by the product of force and time taken i.e.



(b) Impulse is also given by the change in momentum i.e.





(c) For new velocity,



Hence, this is the required solution.