A change of 1 Kelvin is exactly the same as a change of 1 degree Celsius.
We have to get the relationship between metallic character and atomic radius.
Metallic character increases with increase in atomic radius and decrease with decrease of atomic radius.
If electrons from outermost shell of an element can be removed easily, that atom can be considered to have more metallic character.
With increase in atomic radius, nuclear force of attraction towards outermost shell electron decreases which facilitates the release of electron.
With decrease in atomic radius, nuclear force of attraction towards outermost shell electrons increases, so electrons are hold tightly to nucleus. Hence, removal of electron from outermost shell becomes difficult making the atom less metallic in nature.
<u>Answer:</u> The solubility of oxygen at 682 torr is 
<u>Explanation:</u>
To calculate the molar solubility, we use the equation given by Henry's law, which is:

Or,

where,
are the initial concentration and partial pressure of oxygen gas
are the final concentration and partial pressure of oxygen gas
We are given:
Conversion factor used: 1 atm = 760 torr

Putting values in above equation, we get:

Hence, the solubility of oxygen gas at 628 torr is 
Answer:
The answer to your question is below
Explanation:
1. Found in period 2. All the elements in the list are found in period 2.
a. F This option is correct
b. Be Beryllium is located in period two.
c. O also oxygen is found in period 2.
d. C Carbon is found in period 2.
2.- Can gain lose 4 electrons to become its nearest stable noble gas. Only Carbon.
a. F This option is wrong, F becomes stable when it gains 1 electron.
b. Be Beryllium becomes stable when it loses 2 electrons.
c. O Become stable when it gains 2 electrons.
<u>d. C </u><u>Become stable when it gains or loses 4 electrons.</u>
A crystal<span> or </span>crystalline solid<span> is a </span>solid<span> material whose constituents (such as </span>atoms<span>, </span>molecules<span> or </span>ions<span>) are arranged in a highly ordered microscopic structure, forming a </span>crystal lattice<span> that extends in all directions.</span><span> In addition, macroscopic </span>single crystals<span> are usually identifiable by their geometrical shape, consisting of flat </span>faces<span> with specific, characteristic orientations. example of it are ice, rocks , organigenic crystals</span>