1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lakkis [162]
2 years ago
15

Where are the reproductive parts of a plant located?

Physics
2 answers:
Mkey [24]2 years ago
8 0

Answer:

<h2>Flower </h2>

Explanation:

<h2>The flowers are the reproductive parts of a plant. Stamens are the male reproductive part and pistil is the female reproductive part.</h2><h2 />
Ilya [14]2 years ago
6 0
Flower, as the stamen is located there
You might be interested in
What is 18 degrees celsius in fahrenheit ?
Butoxors [25]
18 degree is equal to 64.4 fahrenheit

4 0
2 years ago
How do intensity, frequency, and time affect physical fitness?
Y_Kistochka [10]
Important bc it makes it more effective, the specific rate makes or breaks the fitness. Frequency is important to allow your body to rebuild and repair the damage from working out, it allows the body to adapt and time for rest/ healing. Intensity depends on how much your body breaks so the recover time and frequency must be adjusted. Time effects because of the distance between frequencies which plays a role.
5 0
3 years ago
What’s the difference between 40hz and 300hz
jarptica [38.1K]

Answer:

40hz has less frequency of sound and 300hz has more frequency of sound which means 40hz has less crest and troughs , so it has less reachability thank 300hz.

Explanation:

3 0
3 years ago
Two narrow, parallel slits separated by 0.85 mm are illuminated by 600 nm light, and the viewing screen is 2.8 m away from the s
AURORKA [14]

Answer:

Phase difference = pi/4 radians

Explanation:

Given:

- The wavelength of incident light λ = 600 nm

- The split separation d = 0.85 mm

- Distance of screen from split plane L = 2.8 m

Find:

What is the phase difference between the two interfering waves on a screen, at a point 2.5 mm from the central bright fringe?

Solution:

- The phase difference can be evaluated by determining the type of interference that occurs at point y = 2.5 mm above central order. We will use the derived results from Young's double slit experiment.

                                  sin ( Q ) = m*λ /d  

                                  m = d*sin(Q) / λ

- Where, m is the order number and angle Q is the angle for mth order of fringe from central bright fringe.

                                  r = sqrt ( L^2 + 0.0025^ )

Where, r is the distance from split to the interference bright fringe.

                                  r = sqrt(2.8^ + 0.0025^) = 2.8

                                  sin(Q) = 0.0025 / 2.8

Hence.                        m = 0.00085*0.0025 / 2.8*(600*10^-9)

                                   m = 1.26

- We know that constructive interference would occurred at m = 1 and destructive interference @ m = 1.5. They have a phase difference of pi/2 radians.

- The order number lies in between constructive and destructive interference i.e m ≈ 1.25 then the corresponding phase difference = 0.5*(pi/2).

Answer:                  Phase difference = pi/4 radians

6 0
3 years ago
Consider as a system the Sun with Saturn in a circular orbit around it. Find the magnitude of the change in the velocity of the
Doss [256]

Answer:

v_{su} = 19.44 m/s

Explanation:

m_{su}=5.68x10^{29}kg\\m_{sa}=5.68x10^{26}kg

T=9.29x10^8\\r_{o}=1.43x10^{12}

If the sun considered as x=0 on the axis to put the center of the mass as a:

m_{su}*r_{o}=(m_{sa}+m_{su})*r_{1}

solve to r1

r_1=\frac{m_{sa}*r_{o}}{m_{sa}+m_{su}}=\frac{5.68x10^{26}*1.43x10^{12}}{5.68x10^{26}+5.68x10^{26}}

r_1=1.428x10^9m

Now convert to coordinates centered on the center of mass.  call the new coordinates x' and y' (we won't need y').  Now since in the sun centered coordinates the angular momentum was  

L = \frac{m_{sa}*2*pi*r_1^2}{T}

where T = orbital period

then L'(x',y') = L(x) by conservation of angular momentum.  So that means

L_{sun}=\frac{m_{sa}*2*\pi *( 2r_{o}*r_1 -r_1^2)}{T}

Since

L_{su}= m_{su}*v_{su}*r_1

then

v_{su}=\frac{m_{sa}*2*pi*(2r_{o}*r_{1}-r_{1}^2)}{T*m_{sa}*r_1}

v_{su} = 19.44 m/s

7 0
3 years ago
Other questions:
  • -) Given that 1 inch = 0.0254 m, 1 mile = 1760 yards and 1 yard = 36 inches. Convert 5
    6·1 answer
  • How did early photosynthetic organisms change Earth’s atmosphere?
    8·1 answer
  • In the Earth's mantle, heat is transferred in large convection currents. Within these currents,
    7·2 answers
  • PLEASE HELP WILL MARK BRAINLIEST
    8·2 answers
  • Pendulum takes 1 second to move from x to y so it's frequency equal ​
    14·1 answer
  • A bat at rest sends out ultrasonic sound waves at 46.2 kHz and receives them returned from an object moving directly away from i
    6·1 answer
  • A bullet is shot from a rifle with a speed of 3,015 feet per second. Assuming the billet moves at a constant velocity what is th
    9·1 answer
  • Two identical conducting spheres are charged with a net charge of +5.0 q on the first sphere and a net charge of −8.0 q on the s
    10·1 answer
  • Describe how the movements of earth might affect the movement of air masses in North America
    7·2 answers
  • What conclusion can be made about the relationship between the wavelength of light and the angle of refraction?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!