Average speed = (total distance) / (total time)
Average speed = (4+7+1+2 blox) / (1 hour)
<em>Average speed = 14 blocks/hour</em>
<em></em>
I'm gonna go out on a limb here and take a wild guess:
I'm guessing that there's another question glued onto the end of this one, and it asks you to find either her displacement or her average velocity. I'm so sure of this that I'm gonna give you the solution for that too. If there's no more question, then you won't need this, and you can just discard it. I won't mind.
Average velocity = (displacement) / (time for the displacement)
"Displacement" = distance and direction from the start point to the end point, regardless of how she got there.
Displacement = (4E + 7W + 1E + 2W)
Displacement = (5E + 9W)
<em>Displacement = 4 blocks west</em>
Average velocity = (4 blocks west) / (1 hour)
<em>Average velocity = 4 blocks/hour West</em>
Core
Home of atoms of hydrogen also the lightest element in the universe.
Radiative Zone
Outside the inner Core it radiates energy through the process of photon emission.
Convection Layer
Outer most Layer of the Core, it extends form a depth of 200,000 kilometres to the visible surface. Energy is created by Convection. This is where light is produced.
Photosphere
Surrounds the stars and is where light and heat radiate.
Chromosphere
Reddish gas layer outside of the photosphere I think it also works with the Corona.
Corona
Aura of Plasma that surrounds the Sun and other stars, it extends millions of kilometres and easily seen during a total eclipse.
Duracell batteries are an example of an electrochemical cell that is powered between the reaction of Magnesium and Zinc, occurring in basic conditions (alkaline battery). This type of reaction has a precise output of 1.5 volts, and looks like this:
Zn + 2MnO2 ➡️ ZnO + Mn2O3
It’s not rechargeable.
Golf Cart Batteries are an example of an electrochemical cell that is powered by the reaction between Lead and Sulfuric Acid (Lead-Acid battery). This type of reaction occurs on larger scales than an alkaline battery, and thus can generate a variety of powers depending on how many instruments are present within the battery. The reaction looks like this:
PbO2 + Pb + 2H2SO4 ➡️ 2PbSO4 + H2O
This is a rechargeable cell, but is rather prone to discharging by the environment and surroundings of the battery.
Hotter ocean tempatures mean more moisture in the dense air mass