Answer:
c) mutation and natural selection both cause changes in a population
Explanation:
Hope it help
Mark me as brainliest
Initial velicity Vo.
Sin(23) = 24.7 / Vo
Vo = 24.7/Sin(23)
V0 = 63.2 m/sec
Answer:
a) 
b) 
Explanation:
Given:
- mass of the body,

- mass of the tyre,

- length of hanging of tyre,

- distance run by the body,

- acceleration of the body,

(a)
Using the equation of motion :
..............................(1)
where:
v=final velocity of the body
u=initial velocity of the body
here, since the body starts from rest state:

putting the values in eq. (1)


Now, the momentum of the body just before the jump onto the tyre will be:



Now using the conservation on momentum, the momentum just before climbing on the tyre will be equal to the momentum just after climbing on it.



(b)
Now, from the case of a swinging pendulum we know that the kinetic energy which is maximum at the vertical position of the pendulum gets completely converted into the potential energy at the maximum height.
So,



above the normal hanging position.
Answer:
The angle (relative to vertical) of the net force of the car seat on the officer to the nearest degree is <u>10°.</u>
Explanation:
Given:
Mass of the driver is, 
Radius of circular turn is, 
Linear speed of the car is, 
Since, the car makes a circular turn, the driver experiences a centripetal force radially inward towards the center of the circular turn. Also, the driver experiences a downward force due to her weight. Therefore, two forces act on the driver which are at right angles to each other.
The forces are:
1. Weight = 
2. Centripetal force, 'F', which is given as:

Now, the angle of the net force acting on the driver with respect to the vertical is given by the tan ratio of the centripetal force (Horizontal force) and the weight (Vertical force) and is shown in the triangle below. Thus,
°
Therefore, the angle (relative to vertical) of the net force of the car seat on the officer to the nearest degree is 10°.
.The path of a celestial body or an artificial satellite as it revolves around another body due to their mutual gravitational <span>attraction.</span>